************************************************************************* AAAAA CCCCCC EEEEEEEE SSSSSS 2222222222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCC EEE SSS 222 222 AAAAAAAAA CCC EEEEEE SSSS 222 222 AAA AAA CCC EEE SSS 222 222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCCCCC EEEEEEEE SSSSSS 2222222222 ************************************************************************* ******************************************************* * ACES2: Advanced Concepts in Electronic Structure II * ******************************************************* Department of Chemistry and Biochemistry Institut für Physikalische Chemie University of Texas at Austin Universität Mainz Austin, TX 48792, USA D-55099 Mainz, Germany Mainz-Austin-Budapest-Version 2005 ------------------------------------------------------------------- ACES2 Control Parameters ------------------------------------------------------------------- External Internal Value Units Name Name ------------------------------------------------------------------- PRINT IPRNT 0 *** CALCLEVEL ICLLVL CCSD [ 10] *** DERIV_LEV IDRLVL SECOND [ 2] *** CC_CONV ICCCNV 10D- 10 *** SCF_CONV ISCFCV 10D- 10 *** XFORM_TOL IXFTOL 10D- 11 *** CC_MAXCYC ICCCYC 50 cycles LINDEP_TOL ILINDP 8 *** RDO IRDOFM ON [ 1] *** SCF_EXTRAPO IRPP ON [ 1] *** REFERENCE IREFNC RHF [ 0] *** CC_EXPORDER ICCEOR 5 *** TAMP_SUM IEVERY 5 *** NTOP_TAMP ITOPT2 15 *** CCORBOPT ICCORB OFF [ 0] x 0.01 SCF_MAXCYC ISCFCY 150 cycles OCCUPATION IOCCU ESTIMATED BY SCF PROPS IPROPS OFF [ 0] *** RELAX_DENS IRDENS ON [ 1] *** SCF_EXPORDE IRPPOR 6 *** CC_EXTRAPOL ICCEXT DIIS [ 1] *** BRUECKNER IBRKNR OFF [ 0] *** XFIELD IXEFLD 0 x 10-6 YFIELD IYEFLD 0 x 10-6 ZFIELD IZEFLD 0 x 10-6 SAVE_INTS ISVINT OFF [ 0] *** DROPMO IDRPMO NONE CHARGE ICHRGE 0 *** MULTIPLICTY IMULTP 1 *** CPHF_CONVER ICPHFT 10D- 12 *** CPHF_MAXCYC ICPHFC 64 cycles INCORE INCORE OFF [ 0] *** MEMORY_SIZE IMEMSZ 40000000 words FILE_RECSIZ IFLREC 4096 words NON-HF INONHF OFF [ 0] *** ORBITALS IORBTP STANDARD [ 0] *** SCF_EXPSTAR IRPPLS 8 *** LOCK_ORBOCC ILOCOC OFF [ 0] *** HBAR IHBAR OFF [ 0] *** CACHE_RECS ICHREC 10 *** GUESS IGUESS MOREAD [ 0] *** JODA_PRINT IJPRNT 0 *** GEO_METHOD INR SINGLE_POINT [ 5] *** GEO_CONV ICONTL 5 H/bohr EIGENVECTOR IVEC 1 *** NEGEVAL IDIE ABORT [ 0] *** CURVILINEAR ICURVY OFF [ 0] *** SCALE_ON ISTCRT 0 *** GEO_MAXSTEP IMXSTP 300 millibohr VIBRATION IVIB ANALYTIC [ 1] *** EVAL_HESS IRECAL 0 # of cyc. INTEGRALS INTTYP VMOL [ 1] *** FD_STEPSIZE IDISFD 0 10-4 bohr POINTS IGRDFD 0 *** CONTRACTION ICNTYP GENERAL [ 1] *** SYMMETRY ISYM ON [ 0] *** BASIS IBASIS PVDZ [ 13] *** SPHERICAL IDFGHI ON [ 1] *** RESET_FLAGS IRESET OFF [ 0] *** PERT_ORB IPTORB STANDARD [ 0] *** GENBAS_1 IGNBS1 0 *** GENBAS_2 IGNBS2 0 *** GENBAS_3 IGNBS3 0 *** COORDINATES ICOORD INTERNAL [ 0] *** SYM_CHECK ISYMCK OVERRIDE [ 1] *** SCF_PRINT ISCFPR 0 *** ECP IECP OFF [ 0] *** RESTART_CC ICCRES OFF [ 0] *** TRANS_INV ITRAIN USE [ 0] *** HFSTABILITY ISTABL OFF [ 0] *** ROT_EVEC ROTVEC 0 *** BRUCK_CONV IBRTOL 10D- 4 *** UNITS IUNITS ANGSTROM [ 0] *** FD_USEGROUP IFDGRP FULL [ 0] *** FD_PROJECT IFDPRJ ON [ 0] *** FD_CALTYPE IFDCAL GRADONLY [ 0] *** VTRAN IVTRAN FULL/PARTIAL [ 0] *** HF2_FILE IHF2Fl USE [ 1] *** SUBGROUP ISUBGP DEFAULT [ 0] *** SUBGRPAXIS ISBXYZ X [ 0] *** EXCITE IEXCIT NONE [ 0] *** LINEQ_CONV IZTACN 10D- 10 cycles TREAT_PERT ITREAT SIMULTANEOUS [ 0] *** ESTATE_PROP IEXPRP OFF [ 0] *** GEO_MAXCYC IOPTCY 50 *** ABCDTYPE IABCDT STANDARD [ 0] *** AO_LADDERS IAOLAD SINGLEPASS [ 1] *** FOCK IFOCK AO [ 1] *** ESTATE_MAXC IEXMXC 20 *** ESTATE_CONV IEXTOL 10D- 5 *** DIRECT IDIRCT OFF [ 0] *** GAMMA_ABCD IGABCD STORE [ 0] *** LINEQ_TYPE ILTYPE DIIS [ 1] *** LINEQ_MAXCY ILMAXC 50 *** RESRAMAN IRESRM OFF [ 0] *** PSI IPSI OFF [ 0] *** GAMMA_ABCI IGABCI STORE [ 0] *** ESTATE_DIAG IEXDIG ITERATIVE [ 0] *** FC_FIELD IFINFC 0 x 10-6 SD_FIELD IFINSD 0 x 10-6 DIFF_TYPE IDIFTY RELAXED [ 0] *** LINEQ_EXPOR ILMAXD 5 *** FINITE_PERT IFIPER 0 x 10-6 ANHARMONIC IANHAR OFF [ 0] *** CC_PROGRAM ICCPRO VCC [ 0] *** OPEN-SHELL IOPEN SPIN-ORBITAL [ 0] *** UIJ_THRESHO IUIJTH 25 *** SCF_DAMPING IDAMP 0 x 10-3 PROP_INTEGR IINTYP INTERNAL [ 0] *** ANH_SYMMETR IANHSM NONABELIAN [ 0] *** ANH_ALGORIT IANALG STANDARD [ 0] *** EOM_NONIT EOMNON OFF [ 0] *** GEO_ALGORIT IGEALG STANDARD [ 0] *** ANH_DERIVAT IANDER SECOND [ 1] *** SPINROTATIO ISRCON OFF [ 0] *** CIS_CONV ICISTL 5 *** ANH_STEPSIZ ICUBST 50000 x 10-6 SPIN_FLIP ISPFLP OFF [ 0] *** GRID IGRID OFF [ 0] *** DBOC IDBOC OFF [ 0] *** EOMFOLLOW IEOMSR ENERGY [ 0] *** T3_EXTRAPOL IT3EXT OFF [ 0] *** ESTATE_LOCK IESLOC OFF [ 0] *** UNOS IUNOS OFF [ 0] *** FREQ_ALGORI IVIALG STANDARD [ 0] *** RELATIVIST IRELAT OFF [ 0] *** FROZEN_CORE IFROCO OFF [ 0] *** EXCITATION IEXCIT 0 *** MRCC_INPUT IMRCC ON [ 1] *** GIAO IGIAO OFF [ 1] *** ------------------------------------------------------------------- 4 entries found in Z-matrix Job Title : Calculation of analytic second derivatives at RHF-CCSD level There are 4 unique internal coordinates. Of these, 0 will be optimized. User supplied Z-matrix: -------------------------------------------------------------------------------- SYMBOL BOND LENGTH ANGLE ANGLE DIHED ANGLE TO (ANGST) WRT (DEG) WRT (DEG) -------------------------------------------------------------------------------- O O 1 R1 H 1 R2 2 A H 2 R2 1 A 3 D *Initial values for internal coordinates* Name Value R1 1.452888 R2 0.968860 A 99.544309 D 116.673817 -------------------------------------------------------------------------------- read isotopes from ZMAT file 1 O 8 17.99916 2 O 8 17.99916 3 H 1 2.01410 4 H 1 2.01410 Rotational constants (in cm-1): 0.6788943915 0.7172833196 5.3490530584 Rotational constants (in MHz): 20352.7446862702 21503.6159591974 160360.5989017346 ******************************************************************************** The full molecular point group is C2 . The largest Abelian subgroup of the full molecular point group is C2 . The computational point group is C2 . ******************************************************************************** -------------------------------------------------------------------------------- Analysis of internal coordinates specified by Z-matrix -------------------------------------------------------------------------------- *The nuclear repulsion energy is 36.78434 a.u. *There are 4 degrees of freedom within the tot. symm. molecular subspace. *Z-matrix requests optimization of 0 coordinates. *The optimization is constrained. *The following 4 parameters can have non-zero derivatives within the totally symmetric subspace: D [ 6] A [ 5] R2 [ 4] R1 [ 1] *The following 0 parameters are to be optimized: *The following coordinates must be varied in an unconstrained optimization. D [ 6] A [ 5] R2 [ 4] R1 [ 1] -------------------------------------------------------------------------------- ---------------------------------------------------------------- Z-matrix Atomic Coordinates (in bohr) Symbol Number X Y Z ---------------------------------------------------------------- O 8 1.35841165 0.19810156 -0.09538191 O 8 -1.35841165 -0.19810156 -0.09538191 H 1 1.88058109 -1.27878654 0.85238704 H 1 -1.88058109 1.27878654 0.85238704 ---------------------------------------------------------------- Interatomic distance matrix (Angstroms) O O H H [ 1] [ 2] [ 3] [ 4] O [ 1] 0.00000 O [ 2] 1.45289 0.00000 H [ 3] 0.96886 1.87520 0.00000 H [ 4] 1.87520 0.96886 2.40688 0.00000 Rotational constants (in cm-1): 5.3490530584 0.7172833196 0.6788943915 Rotational constants (in MHz): 160360.5989017344 21503.6159591974 20352.7446862702 There are 38 basis functions. in runit xjoda 0 One- and two-electron integrals over symmetry-adapted AOs are calculated. Spherical harmonics are used. Integrals less than 0.10E-13 are neglected. Nuclear repulsion energy : 36.7843363696 a.u. required memory for a1 array 4027556 words required memory for a2 array 2092120 words GETMEM: Allocated 30 MB of memory in. @MOLECU-I, One electron integrals required 0.02000 seconds. @TWOEL-I, 31002 integrals of symmetry type I I I I @TWOEL-I, 55925 integrals of symmetry type I J I J @TWOEL-I, 30812 integrals of symmetry type I I J J @TWOEL-I, Total number of 2-e integrals 117739. @MOLECU-I, Two electron integrals required 0.34000 seconds. @CHECKOUT-I, Total execution time : 0.3600 seconds. in runit xvmol 0 GETMEM: Allocated 152 MB of memory in. @CHECKOUT-I, Total execution time : 0.0100 seconds. in runit xvmol2ja 0 There are 38 functions in the AO basis. There are 2 irreducible representations. Irrep # of functions 1 19 2 19 Parameters for SCF calculation: SCF reference function: RHF Maximum number of iterations: 150 Full symmetry point group: C2 Computational point group: C2 Initial density matrix: MOREAD SCF convergence tolerance: 10**(-10) DIIS convergence acceleration: ON Latest start for DIIS: 8 DIIS order: 6 Memory information: 122531 words required. Fock matrices are constructed from AO integral file. GETMEM: Allocated 0 MB of memory in. Initialization and symmetry analysis required 0.000 seconds. @INITGES-I, Occupancies from core Hamiltonian: Alpha population by irrep: 5 4 Beta population by irrep: 5 4 -------------------------------------------------------------------- Iteration Total Energy Largest Density Difference -------------------------------------------------------------------- processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 0 36.7843363696 0.0000000000D+00 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 1 -139.4532595437 0.4618954088D+01 largest error matrix element: -0.1880291702D+01 norm of error vector: 0.7744492175D+01 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 2 -142.7164985130 0.4337339395D+01 largest error matrix element: -0.1474254249D+01 norm of error vector: 0.6997770892D+01 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 3 -148.1482727299 0.4219409323D+01 largest error matrix element: -0.1123942080D+01 norm of error vector: 0.4957551997D+01 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 4 -149.9640413659 0.1628400452D+01 largest error matrix element: 0.7026882893D+00 norm of error vector: 0.2947142308D+01 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 5 -150.5856235161 0.6890449670D+00 largest error matrix element: -0.3525137173D+00 norm of error vector: 0.1491992874D+01 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 6 -150.7371441202 0.4265186404D+00 largest error matrix element: -0.1886381683D+00 norm of error vector: 0.7217999499D+00 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 7 -150.7731361154 0.1776332329D+00 largest error matrix element: 0.8447711828D-01 norm of error vector: 0.3451129938D+00 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 8 -150.7835874675 0.6634177747D-01 largest error matrix element: -0.7766856967D-03 norm of error vector: 0.4297647715D-02 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 9 -150.7835946035 0.1007755458D-02 largest error matrix element: 0.4464624616D-03 norm of error vector: 0.1469003840D-02 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 10 -150.7835956648 0.6546919004D-03 largest error matrix element: 0.1871425742D-03 norm of error vector: 0.4260800639D-03 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 11 -150.7835957664 0.2900642668D-03 largest error matrix element: 0.7474076959D-04 norm of error vector: 0.1603653686D-03 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 12 -150.7835957846 0.1556713254D-03 largest error matrix element: 0.1558135187D-04 norm of error vector: 0.4343835137D-04 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 13 -150.7835957857 0.3364369104D-04 largest error matrix element: -0.2777396310D-05 norm of error vector: 0.8586639159D-05 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 14 -150.7835957858 0.6712919190D-05 largest error matrix element: 0.4249269005D-06 norm of error vector: 0.1910786126D-05 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 15 -150.7835957858 0.4825435627D-06 largest error matrix element: 0.9470169936D-07 norm of error vector: 0.5363481859D-06 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 16 -150.7835957858 0.1914226536D-06 largest error matrix element: 0.2001107259D-07 norm of error vector: 0.8730634268D-07 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 17 -150.7835957858 0.2143285137D-07 largest error matrix element: -0.6059148518D-08 norm of error vector: 0.2968627108D-07 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 18 -150.7835957858 0.6414081155D-08 largest error matrix element: 0.2269259449D-08 norm of error vector: 0.9427956347D-08 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 19 -150.7835957858 0.3263131071D-08 largest error matrix element: 0.8325966537D-09 norm of error vector: 0.2220762010D-08 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 20 -150.7835957858 0.1261628427D-08 largest error matrix element: 0.3207581962D-09 norm of error vector: 0.7098580252D-09 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 21 -150.7835957858 0.4704883774D-09 largest error matrix element: -0.1382934330D-09 norm of error vector: 0.3094745845D-09 current occupation vector 5 4 5 4 processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. 22 -150.7835957858 0.2655189818D-09 largest error matrix element: -0.3546028410D-10 norm of error vector: 0.9827536174D-10 current occupation vector 5 4 5 4 SCF has converged. processed 31002 ao basis integrals from 52 buffers. processed 30812 ao basis integrals from 52 buffers. processed 55925 ao basis integrals from 94 buffers. E(SCF)= -150.7835957858 0.7818586750D-10 Eigenvector printing suppressed. @PUTMOS-I, Writing converged MOs to NEWMOS. @PUTMOS-I, Symmetry 1 Full 4 Partial 3 @PUTMOS-I, Symmetry 2 Full 4 Partial 3 @PRJDEN-I, Analyzing reference function density. Trace of projected alpha density matrix = 1.000000000 Alpha part of wavefunction is symmetric. ORBITAL EIGENVALUES (ALPHA) (1H = 27.2116089 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -20.6243059619 -561.2205473953 A A (1) 2 20 -20.6240182540 -561.2127183996 B B (2) 3 2 -1.4678071434 -39.9413939084 A A (1) 4 21 -1.2066962554 -32.8361465480 B B (2) 5 22 -0.7036039475 -19.1461954296 B B (2) 6 3 -0.6994465088 -19.0330648344 A A (1) 7 4 -0.5989182614 -16.2975294841 A A (1) 8 5 -0.5120477344 -13.9336426786 A A (1) 9 23 -0.4749605185 -12.9244398656 B B (2) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 10 6 0.1873837761 5.0990140257 A A (1) 11 24 0.1919299300 5.2227221888 B B (2) 12 25 0.3030016729 8.2451630160 B B (2) 13 26 0.8175528540 22.2469285061 B B (2) 14 7 0.8194691485 22.2990739641 A A (1) 15 27 1.1182881968 30.4304210334 B B (2) 16 8 1.1399135838 31.0188826067 A A (1) 17 9 1.1531968629 31.3803420023 A A (1) 18 28 1.2141526904 33.0390481407 B B (2) 19 29 1.2814068589 34.8691422699 B B (2) 20 10 1.3428038283 36.5398525866 A A (1) 21 30 1.4626348145 39.8006465150 B B (2) 22 11 1.5112245094 41.1228502909 A A (1) 23 31 1.6416430770 44.6717493418 B B (2) 24 12 1.6763438180 45.6160123359 A A (1) 25 13 1.9514039695 53.1008415974 A A (1) 26 32 2.0073831647 54.6241255636 B B (2) 27 14 2.4179963648 65.7975713672 A A (1) 28 33 2.4250779386 65.9902723856 B B (2) 29 15 2.7415503306 74.6019953389 A A (1) 30 16 2.7659087240 75.2648264148 A A (1) 31 34 2.8973349590 78.8411457192 B B (2) 32 17 3.2462818534 88.3365521313 A A (1) 33 35 3.2852266850 89.3963036566 B B (2) 34 36 3.4331017701 93.4202226362 B B (2) 35 18 3.5349316540 96.1911776105 A A (1) 36 37 3.8922450976 105.9142512870 B B (2) 37 19 3.9352333652 107.0840312118 A A (1) 38 38 4.2342748204 115.2214303310 B B (2) VSCF finished. @CHECKOUT-I, Total execution time : 0.1500 seconds. in runit xvscf 0 GETMEM: Allocated 152 MB of memory in. Full RHF integral transformation Transformation of IIII integrals : 1 pass through the AO integral file was required. 31002 AO integrals were read. 36290 MO integrals were written to HF2. Transformation of IIJJ integrals : 1 pass through the AO integral file was required. 30812 AO integrals were read. 36100 MO integrals were written to HF2. Transformation of IJIJ integrals : 1 pass through the AO integral file was required. 55925 AO integrals were read. 65341 MO integrals were written to HF2. Summary of active molecular orbitals: ------------------------------------------------------------------------ Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -20.6243060 1 20 2.7659087 1 2 -1.4678071 1 21 3.2462819 1 3 -0.6994465 1 22 3.5349317 1 4 -0.5989183 1 23 3.9352334 1 5 -0.5120477 1 24 0.1919299 2 6 -20.6240183 2 25 0.3030017 2 7 -1.2066963 2 26 0.8175529 2 8 -0.7036039 2 27 1.1182882 2 9 -0.4749605 2 28 1.2141527 2 10 0.1873838 1 29 1.2814069 2 11 0.8194691 1 30 1.4626348 2 12 1.1399136 1 31 1.6416431 2 13 1.1531969 1 32 2.0073832 2 14 1.3428038 1 33 2.4250779 2 15 1.5112245 1 34 2.8973350 2 16 1.6763438 1 35 3.2852267 2 17 1.9514040 1 36 3.4331018 2 18 2.4179964 1 37 3.8922451 2 19 2.7415503 1 38 4.2342748 2 ------------------------------------------------------------------------ @CHECKOUT-I, Total execution time : 0.1300 seconds. in runit xvtran 0 GETMEM: Allocated 152 MB of memory in. Processing integrals for CCSD calculation. @GMOIAA-I, Processing MO integrals for spin case AA. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 47580 PPPH 56760 PPHH 17161 PHPH 9825 PHHH 5870 HHHH 535 TOTAL 137731 @FORMT2-I, Second-order MBPT correlation energies: ---------------------------------------------- E(SCF) = -150.783595785779 a.u. E2(AA) = -0.050040279813 a.u. E2(AB) = -0.291229732637 a.u. E2(TOT) = -0.391310292263 a.u. Total MBPT(2) energy = -151.174906078042 a.u. ---------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.04726 [ 3 3 25 25]-0.03410 [ 4 3 25 25]-0.02886 [ 3 4 25 25]-0.02886 [ 4 4 25 24] 0.02516 [ 4 4 24 25] 0.02516 [ 5 5 27 27]-0.02329 [ 9 9 12 12]-0.02119 [ 5 5 25 25]-0.02096 [ 5 4 27 25] 0.02074 [ 4 5 25 27] 0.02074 [ 9 4 12 25] 0.01876 [ 4 9 25 12] 0.01876 [ 9 3 12 25] 0.01767 [ 3 9 25 12] 0.01767 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.2794048691. ----------------------------------------------------------------------------- @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xintprc 0 GETMEM: Allocated 152 MB of memory in. CCSD energy will be calculated. Correlation energies computed from initial T amplitudes: Initial T amplitudes: Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.04726 [ 3 3 25 25]-0.03410 [ 4 3 25 25]-0.02886 [ 3 4 25 25]-0.02886 [ 4 4 25 24] 0.02516 [ 4 4 24 25] 0.02516 [ 5 5 27 27]-0.02329 [ 9 9 12 12]-0.02119 [ 5 5 25 25]-0.02096 [ 5 4 27 25] 0.02074 [ 4 5 25 27] 0.02074 [ 9 4 12 25] 0.01876 [ 4 9 25 12] 0.01876 [ 9 3 12 25] 0.01767 [ 3 9 25 12] 0.01767 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.2794048691. ----------------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0500403 a.u. The AB contribution to the correlation energy is: -0.2912297 a.u. The total correlation energy is -0.391310292263 a.u. W(mnij) AB contribution = 0.0557051487 a.u. W(abef) AB contribution = 0.0618821179 a.u. W(mbej) AB contribution = -0.1462872291 a.u. After 1 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0002053508 0.0093857449 8 24 T2 AA 0.0000026631 0.0040753557 9 4 25 12 T2 AB 0.0000010826-0.0042151906 5 5 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0446869 a.u. The AB contribution to the correlation energy is: -0.3035262 a.u. The total correlation energy is -0.392899974061 a.u. Convergence information after 1 iterations: Largest element of residual vector : 0.93857449E-02. Largest element of DIIS residual : 0.93857449E-02. W(mnij) AB contribution = 0.0623277877 a.u. W(abef) AB contribution = 0.0685780020 a.u. W(mbej) AB contribution = -0.1748544733 a.u. After 2 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000322143 0.0016146321 8 24 T2 AA 0.0000003378-0.0003135878 3 2 26 25 T2 AB 0.0000005302-0.0049362895 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0442897 a.u. The AB contribution to the correlation energy is: -0.3137456 a.u. The total correlation energy is -0.402325053526 a.u. Convergence information after 2 iterations: Largest element of residual vector : -0.49362895E-02. Largest element of DIIS residual : -0.49824123E-02. W(mnij) AB contribution = 0.0683773471 a.u. W(abef) AB contribution = 0.0753486404 a.u. W(mbej) AB contribution = -0.1951688529 a.u. After 3 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000263032 0.0019463302 8 24 T2 AA 0.0000002783 0.0004775084 9 4 25 12 T2 AB 0.0000001702-0.0012723729 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0437026 a.u. The AB contribution to the correlation energy is: -0.3161708 a.u. The total correlation energy is -0.403575886799 a.u. Convergence information after 3 iterations: Largest element of residual vector : 0.19463302E-02. Largest element of DIIS residual : 0.13788971E-02. W(mnij) AB contribution = 0.0709069423 a.u. W(abef) AB contribution = 0.0781371446 a.u. W(mbej) AB contribution = -0.2047667231 a.u. After 4 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000061046 0.0004491778 8 24 T2 AA 0.0000000460 0.0000694338 5 3 25 24 T2 AB 0.0000000460-0.0003132085 5 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0434396 a.u. The AB contribution to the correlation energy is: -0.3179689 a.u. The total correlation energy is -0.404848225113 a.u. Convergence information after 4 iterations: Largest element of residual vector : 0.44917784E-03. Largest element of DIIS residual : -0.25056015E-03. W(mnij) AB contribution = 0.0711743109 a.u. W(abef) AB contribution = 0.0784938324 a.u. W(mbej) AB contribution = -0.2059062101 a.u. After 5 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000035636-0.0002523377 8 25 T2 AA 0.0000000110 0.0000256910 5 4 25 24 T2 AB 0.0000000121 0.0000903685 5 4 25 24 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433902 a.u. The AB contribution to the correlation energy is: -0.3181366 a.u. The total correlation energy is -0.404916991202 a.u. Convergence information after 5 iterations: Largest element of residual vector : -0.25233770E-03. Largest element of DIIS residual : -0.19693786E-03. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01502 [ 4 14 ] 0.01034 [ 4 17 ]-0.00800 [ 3 13 ]-0.00761 [ 3 18 ] 0.00730 [ 4 12 ]-0.00729 [ 5 14 ] 0.00642 [ 3 10 ] 0.00611 [ 5 11 ] 0.00586 [ 9 24 ]-0.00584 [ 3 14 ] 0.00567 [ 2 10 ]-0.00517 [ 8 27 ] 0.00510 [ 7 25 ]-0.00495 [ 9 26 ] 0.00490 ----------------------------------------------------------------------------- Norm of T1AA vector ( 130 symmetry allowed elements): 0.0353404528. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05924 [ 3 3 25 25]-0.03876 [ 4 3 25 25]-0.03506 [ 3 4 25 25]-0.03506 [ 4 4 25 24] 0.03257 [ 4 4 24 25] 0.03257 [ 5 5 25 25]-0.03001 [ 5 5 27 27]-0.02439 [ 5 4 25 25]-0.02408 [ 4 5 25 25]-0.02408 [ 5 5 24 24]-0.02207 [ 4 4 24 24]-0.02199 [ 9 9 12 12]-0.02173 [ 5 4 24 25] 0.02029 [ 4 5 25 24] 0.02029 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.3135668896. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0712203427 a.u. W(abef) AB contribution = 0.0785637229 a.u. W(mbej) AB contribution = -0.2061142492 a.u. After 6 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000013163-0.0000945553 8 25 T2 AA 0.0000000044-0.0000071520 4 3 25 24 T2 AB 0.0000000046 0.0000358040 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433829 a.u. The AB contribution to the correlation energy is: -0.3181630 a.u. The total correlation energy is -0.404928771197 a.u. Convergence information after 6 iterations: Largest element of residual vector : -0.94555324E-04. Largest element of DIIS residual : -0.56154040E-04. W(mnij) AB contribution = 0.0711973482 a.u. W(abef) AB contribution = 0.0785417925 a.u. W(mbej) AB contribution = -0.2060390777 a.u. After 7 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000006281-0.0000486475 9 24 T2 AA 0.0000000022-0.0000045080 4 3 25 24 T2 AB 0.0000000016 0.0000126763 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433867 a.u. The AB contribution to the correlation energy is: -0.3181531 a.u. The total correlation energy is -0.404926579189 a.u. Convergence information after 7 iterations: Largest element of residual vector : -0.48647534E-04. Largest element of DIIS residual : 0.30490665E-04. W(mnij) AB contribution = 0.0711994652 a.u. W(abef) AB contribution = 0.0785441394 a.u. W(mbej) AB contribution = -0.2060420657 a.u. After 8 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000002529 0.0000238896 9 25 T2 AA 0.0000000007-0.0000018102 4 3 25 24 T2 AB 0.0000000007 0.0000047424 4 3 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433877 a.u. The AB contribution to the correlation energy is: -0.3181516 a.u. The total correlation energy is -0.404926934359 a.u. Convergence information after 8 iterations: Largest element of residual vector : 0.23889561E-04. Largest element of DIIS residual : 0.18504715E-04. W(mnij) AB contribution = 0.0711975561 a.u. W(abef) AB contribution = 0.0785412990 a.u. W(mbej) AB contribution = -0.2060336088 a.u. After 9 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000001365 0.0000127744 9 25 T2 AA 0.0000000003-0.0000004730 4 3 25 24 T2 AB 0.0000000003-0.0000034383 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433882 a.u. The AB contribution to the correlation energy is: -0.3181510 a.u. The total correlation energy is -0.404927413835 a.u. Convergence information after 9 iterations: Largest element of residual vector : 0.12774404E-04. Largest element of DIIS residual : 0.83898664E-05. W(mnij) AB contribution = 0.0711985807 a.u. W(abef) AB contribution = 0.0785424243 a.u. W(mbej) AB contribution = -0.2060368554 a.u. After 10 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000727 0.0000071263 9 25 T2 AA 0.0000000002 0.0000003639 5 3 25 24 T2 AB 0.0000000002-0.0000016192 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433881 a.u. The AB contribution to the correlation energy is: -0.3181513 a.u. The total correlation energy is -0.404927453803 a.u. Convergence information after 10 iterations: Largest element of residual vector : 0.71262782E-05. Largest element of DIIS residual : 0.28538154E-05. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01520 [ 4 14 ] 0.01034 [ 4 17 ]-0.00800 [ 3 13 ]-0.00760 [ 3 18 ] 0.00730 [ 4 12 ]-0.00729 [ 5 14 ] 0.00642 [ 9 24 ]-0.00615 [ 3 10 ] 0.00612 [ 5 11 ] 0.00586 [ 3 14 ] 0.00567 [ 2 10 ]-0.00514 [ 8 27 ] 0.00513 [ 7 25 ]-0.00497 [ 9 26 ] 0.00493 ----------------------------------------------------------------------------- Norm of T1AA vector ( 130 symmetry allowed elements): 0.0355091952. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05924 [ 3 3 25 25]-0.03867 [ 4 3 25 25]-0.03503 [ 3 4 25 25]-0.03503 [ 4 4 25 24] 0.03257 [ 4 4 24 25] 0.03257 [ 5 5 25 25]-0.03002 [ 5 5 27 27]-0.02438 [ 5 4 25 25]-0.02414 [ 4 5 25 25]-0.02414 [ 5 5 24 24]-0.02208 [ 4 4 24 24]-0.02199 [ 9 9 12 12]-0.02173 [ 5 4 24 25] 0.02034 [ 4 5 25 24] 0.02034 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.3135243017. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0711984624 a.u. W(abef) AB contribution = 0.0785422638 a.u. W(mbej) AB contribution = -0.2060364903 a.u. After 11 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000237 0.0000017461 9 25 T2 AA 0.0000000001 0.0000002204 5 3 25 24 T2 AB 0.0000000001-0.0000008980 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433881 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927576102 a.u. Convergence information after 11 iterations: Largest element of residual vector : 0.17460759E-05. Largest element of DIIS residual : 0.80084528E-06. W(mnij) AB contribution = 0.0711985562 a.u. W(abef) AB contribution = 0.0785424652 a.u. W(mbej) AB contribution = -0.2060370872 a.u. After 12 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000070 0.0000005648 9 25 T2 AA 0.0000000000 0.0000000739 5 3 25 24 T2 AB 0.0000000000 0.0000001634 5 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181515 a.u. The total correlation energy is -0.404927547046 a.u. Convergence information after 12 iterations: Largest element of residual vector : 0.56475954E-06. Largest element of DIIS residual : -0.29222681E-06. W(mnij) AB contribution = 0.0711985145 a.u. W(abef) AB contribution = 0.0785424206 a.u. W(mbej) AB contribution = -0.2060369562 a.u. After 13 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000019-0.0000001292 4 10 T2 AA 0.0000000000-0.0000000210 9 4 25 12 T2 AB 0.0000000000-0.0000000941 5 5 24 24 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181515 a.u. The total correlation energy is -0.404927541384 a.u. Convergence information after 13 iterations: Largest element of residual vector : -0.12922103E-06. Largest element of DIIS residual : -0.83906019E-07. W(mnij) AB contribution = 0.0711984946 a.u. W(abef) AB contribution = 0.0785423986 a.u. W(mbej) AB contribution = -0.2060368813 a.u. After 14 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000010 0.0000000652 9 25 T2 AA 0.0000000000-0.0000000087 9 4 25 12 T2 AB 0.0000000000 0.0000000288 5 5 25 24 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927535800 a.u. Convergence information after 14 iterations: Largest element of residual vector : 0.65242816E-07. Largest element of DIIS residual : 0.24572415E-07. W(mnij) AB contribution = 0.0711984856 a.u. W(abef) AB contribution = 0.0785423857 a.u. W(mbej) AB contribution = -0.2060368397 a.u. After 15 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000003 0.0000000214 9 25 T2 AA 0.0000000000 0.0000000016 8 4 25 10 T2 AB 0.0000000000-0.0000000081 5 5 24 24 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927535200 a.u. Convergence information after 15 iterations: Largest element of residual vector : 0.21412468E-07. Largest element of DIIS residual : 0.16347254E-07. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01520 [ 4 14 ] 0.01034 [ 4 17 ]-0.00800 [ 3 13 ]-0.00760 [ 3 18 ] 0.00730 [ 4 12 ]-0.00729 [ 5 14 ] 0.00642 [ 9 24 ]-0.00615 [ 3 10 ] 0.00612 [ 5 11 ] 0.00586 [ 3 14 ] 0.00567 [ 2 10 ]-0.00514 [ 8 27 ] 0.00513 [ 7 25 ]-0.00497 [ 9 26 ] 0.00493 ----------------------------------------------------------------------------- Norm of T1AA vector ( 130 symmetry allowed elements): 0.0355090207. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05924 [ 3 3 25 25]-0.03867 [ 4 3 25 25]-0.03503 [ 3 4 25 25]-0.03503 [ 4 4 25 24] 0.03257 [ 4 4 24 25] 0.03257 [ 5 5 25 25]-0.03002 [ 5 5 27 27]-0.02438 [ 5 4 25 25]-0.02414 [ 4 5 25 25]-0.02414 [ 5 5 24 24]-0.02208 [ 4 4 24 24]-0.02199 [ 9 9 12 12]-0.02173 [ 5 4 24 25] 0.02034 [ 4 5 25 24] 0.02034 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.3135246338. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0711984853 a.u. W(abef) AB contribution = 0.0785423845 a.u. W(mbej) AB contribution = -0.2060368362 a.u. After 16 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000001 0.0000000095 9 25 T2 AA 0.0000000000-0.0000000008 5 4 25 24 T2 AB 0.0000000000-0.0000000030 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433881 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927536197 a.u. Convergence information after 16 iterations: Largest element of residual vector : 0.94833761E-08. Largest element of DIIS residual : 0.67424667E-08. W(mnij) AB contribution = 0.0711984869 a.u. W(abef) AB contribution = 0.0785423865 a.u. W(mbej) AB contribution = -0.2060368422 a.u. After 17 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000001 0.0000000062 9 25 T2 AA 0.0000000000-0.0000000004 5 3 27 25 T2 AB 0.0000000000-0.0000000015 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433881 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927536561 a.u. Convergence information after 17 iterations: Largest element of residual vector : 0.62478161E-08. Largest element of DIIS residual : 0.38640831E-08. W(mnij) AB contribution = 0.0711984877 a.u. W(abef) AB contribution = 0.0785423874 a.u. W(mbej) AB contribution = -0.2060368452 a.u. After 18 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000023 9 25 T2 AA 0.0000000000 0.0000000001 9 5 25 12 T2 AB 0.0000000000-0.0000000012 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433881 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537035 a.u. Convergence information after 18 iterations: Largest element of residual vector : 0.23199073E-08. Largest element of DIIS residual : 0.14345617E-08. W(mnij) AB contribution = 0.0711984880 a.u. W(abef) AB contribution = 0.0785423879 a.u. W(mbej) AB contribution = -0.2060368466 a.u. After 19 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000013 9 25 T2 AA 0.0000000000 0.0000000000 9 5 25 12 T2 AB 0.0000000000-0.0000000003 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537115 a.u. Convergence information after 19 iterations: Largest element of residual vector : 0.12795898E-08. Largest element of DIIS residual : 0.70431396E-09. W(mnij) AB contribution = 0.0711984881 a.u. W(abef) AB contribution = 0.0785423879 a.u. W(mbej) AB contribution = -0.2060368468 a.u. After 20 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000005 9 25 T2 AA 0.0000000000 0.0000000000 9 4 25 12 T2 AB 0.0000000000 0.0000000001 5 5 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537147 a.u. Convergence information after 20 iterations: Largest element of residual vector : 0.46989455E-09. Largest element of DIIS residual : -0.32242416E-09. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01520 [ 4 14 ] 0.01034 [ 4 17 ]-0.00800 [ 3 13 ]-0.00760 [ 3 18 ] 0.00730 [ 4 12 ]-0.00729 [ 5 14 ] 0.00642 [ 9 24 ]-0.00615 [ 3 10 ] 0.00612 [ 5 11 ] 0.00586 [ 3 14 ] 0.00567 [ 2 10 ]-0.00514 [ 8 27 ] 0.00513 [ 7 25 ]-0.00497 [ 9 26 ] 0.00493 ----------------------------------------------------------------------------- Norm of T1AA vector ( 130 symmetry allowed elements): 0.0355090333. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05924 [ 3 3 25 25]-0.03867 [ 4 3 25 25]-0.03503 [ 3 4 25 25]-0.03503 [ 4 4 25 24] 0.03257 [ 4 4 24 25] 0.03257 [ 5 5 25 25]-0.03002 [ 5 5 27 27]-0.02438 [ 5 4 25 25]-0.02414 [ 4 5 25 25]-0.02414 [ 5 5 24 24]-0.02208 [ 4 4 24 24]-0.02199 [ 9 9 12 12]-0.02173 [ 5 4 24 25] 0.02034 [ 4 5 25 24] 0.02034 ----------------------------------------------------------------------------- Norm of T2AB vector ( 34061 symmetry allowed elements): 0.3135246411. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0711984880 a.u. W(abef) AB contribution = 0.0785423879 a.u. W(mbej) AB contribution = -0.2060368467 a.u. After 21 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000002 9 25 T2 AA 0.0000000000 0.0000000000 4 3 25 24 T2 AB 0.0000000000 0.0000000001 5 5 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537132 a.u. Convergence information after 21 iterations: Largest element of residual vector : 0.20058532E-09. Largest element of DIIS residual : -0.75446616E-10. W(mnij) AB contribution = 0.0711984880 a.u. W(abef) AB contribution = 0.0785423878 a.u. W(mbej) AB contribution = -0.2060368465 a.u. After 22 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000-0.0000000001 9 24 T2 AA 0.0000000000 0.0000000000 4 3 25 24 T2 AB 0.0000000000 0.0000000000 5 5 25 25 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537118 a.u. Convergence information after 22 iterations: Largest element of residual vector : -0.51783531E-10. Largest element of DIIS residual : -0.24023101E-10. Amplitude equations converged in 22iterations. The AA contribution to the correlation energy is: -0.0433880 a.u. The AB contribution to the correlation energy is: -0.3181514 a.u. The total correlation energy is -0.404927537112 a.u. The CC iterations have converged. Summary of iterative solution of CC equations ----------------------------------------------------------- Correlation Total Iteration Energy Energy ----------------------------------------------------------- 0 -0.391310292263 -151.174906078042 DIIS 1 -0.392899974061 -151.176495759840 DIIS 2 -0.402325053526 -151.185920839305 DIIS 3 -0.403575886799 -151.187171672578 DIIS 4 -0.404848225113 -151.188444010892 DIIS 5 -0.404916991202 -151.188512776981 DIIS 6 -0.404928771197 -151.188524556976 DIIS 7 -0.404926579189 -151.188522364968 DIIS 8 -0.404926934359 -151.188522720138 DIIS 9 -0.404927413835 -151.188523199614 DIIS 10 -0.404927453803 -151.188523239582 DIIS 11 -0.404927576102 -151.188523361880 DIIS 12 -0.404927547046 -151.188523332825 DIIS 13 -0.404927541384 -151.188523327163 DIIS 14 -0.404927535800 -151.188523321579 DIIS 15 -0.404927535200 -151.188523320978 DIIS 16 -0.404927536197 -151.188523321976 DIIS 17 -0.404927536561 -151.188523322340 DIIS 18 -0.404927537035 -151.188523322814 DIIS 19 -0.404927537115 -151.188523322894 DIIS 20 -0.404927537147 -151.188523322925 DIIS 21 -0.404927537132 -151.188523322910 DIIS 22 -0.404927537112 -151.188523322891 DIIS ----------------------------------------------------------- A miracle has come to pass. The CC iterations have converged. @CHECKOUT-I, Total execution time : 3.1600 seconds. in runit xvcc 0 GETMEM: Allocated 152 MB of memory in. The Lambda equations are solved for CCSD. Initial lambda amplitudes: Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01520 [ 4 14 ] 0.01034 [ 4 17 ]-0.00800 [ 3 13 ]-0.00760 [ 3 18 ] 0.00730 [ 4 12 ]-0.00729 [ 5 14 ] 0.00642 [ 9 24 ]-0.00615 [ 3 10 ] 0.00612 [ 5 11 ] 0.00586 [ 3 14 ] 0.00567 [ 2 10 ]-0.00514 [ 8 27 ] 0.00513 [ 7 25 ]-0.00497 [ 9 26 ] 0.00493 ----------------------------------------------------------------------------- Norm of L1AA vector ( 130 symmetry allowed elements): 0.0355090334. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05924 [ 3 3 25 25]-0.03867 [ 4 3 25 25]-0.03503 [ 3 4 25 25]-0.03503 [ 4 4 25 24] 0.03257 [ 4 4 24 25] 0.03257 [ 5 5 25 25]-0.03002 [ 5 5 27 27]-0.02438 [ 5 4 25 25]-0.02414 [ 4 5 25 25]-0.02414 [ 5 5 24 24]-0.02208 [ 4 4 24 24]-0.02199 [ 9 9 12 12]-0.02173 [ 5 4 24 25] 0.02034 [ 4 5 25 24] 0.02034 ----------------------------------------------------------------------------- Norm of L2AB vector ( 34061 symmetry allowed elements): 0.3135246409. ----------------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0433705 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3181920 a.u. The total Lambda pseudoenergy is -0.404933021131 a.u. The AA contribution to the Lambda pseudoenergy is: -0.0433705 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3181920 a.u. The total Lambda pseudoenergy is -0.404933021131 a.u. After 1 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000292005-0.0015538536 8 24 L2 AA 0.0000004651-0.0005775759 5 4 27 25 L2 AB 0.0000002550 0.0021824485 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0422538 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3114716 a.u. The total Lambda pseudoenergy is -0.395979147698 a.u. Convergence information after 1 iterations: Largest element of residual vector : 0.21824485E-02. Largest element of DIIS residual : 0.21824485E-02. After 2 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000088173-0.0004377790 8 24 L2 AA 0.0000000616 0.0000710305 4 3 25 24 L2 AB 0.0000000469 0.0003978649 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423315 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3109429 a.u. The total Lambda pseudoenergy is -0.395605869906 a.u. Convergence information after 2 iterations: Largest element of residual vector : -0.43777897E-03. Largest element of DIIS residual : -0.30458229E-03. After 3 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000036540-0.0002874909 8 24 L2 AA 0.0000000253-0.0000243889 4 3 29 25 L2 AB 0.0000000193 0.0001678194 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423468 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3106953 a.u. The total Lambda pseudoenergy is -0.395388921820 a.u. Convergence information after 3 iterations: Largest element of residual vector : -0.28749093E-03. Largest element of DIIS residual : -0.22718454E-03. After 4 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000014438-0.0001200662 8 24 L2 AA 0.0000000089 0.0000113267 5 3 27 25 L2 AB 0.0000000062 0.0000377055 4 5 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423619 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105719 a.u. The total Lambda pseudoenergy is -0.395295709996 a.u. Convergence information after 4 iterations: Largest element of residual vector : -0.12006624E-03. Largest element of DIIS residual : 0.60204692E-04. After 5 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000006158 0.0000452442 9 24 L2 AA 0.0000000027-0.0000036029 9 3 25 12 L2 AB 0.0000000021-0.0000158656 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423684 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105485 a.u. The total Lambda pseudoenergy is -0.395285333766 a.u. Convergence information after 5 iterations: Largest element of residual vector : 0.45244196E-04. Largest element of DIIS residual : 0.30975010E-04. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01254 [ 4 14 ] 0.00903 [ 4 17 ]-0.00665 [ 3 13 ]-0.00652 [ 4 12 ]-0.00623 [ 3 18 ] 0.00601 [ 5 14 ] 0.00539 [ 5 11 ] 0.00528 [ 9 24 ]-0.00496 [ 3 14 ] 0.00494 [ 3 10 ] 0.00490 [ 9 26 ] 0.00443 [ 7 25 ]-0.00430 [ 4 20 ]-0.00428 [ 5 10 ]-0.00426 ----------------------------------------------------------------------------- Norm of L1AA vector ( 130 symmetry allowed elements): 0.0302120341. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05629 [ 3 3 25 25]-0.03691 [ 4 3 25 25]-0.03335 [ 3 4 25 25]-0.03335 [ 4 4 25 24] 0.03082 [ 4 4 24 25] 0.03082 [ 5 5 25 25]-0.02845 [ 5 5 27 27]-0.02404 [ 5 4 25 25]-0.02293 [ 4 5 25 25]-0.02293 [ 9 9 12 12]-0.02186 [ 5 5 24 24]-0.02106 [ 4 4 24 24]-0.02087 [ 5 4 24 25] 0.01932 [ 4 5 25 24] 0.01932 ----------------------------------------------------------------------------- Norm of L2AB vector ( 34061 symmetry allowed elements): 0.3048485172. ----------------------------------------------------------------------------- After 6 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000002539 0.0000202487 9 24 L2 AA 0.0000000010 0.0000015036 4 3 25 24 L2 AB 0.0000000007-0.0000065208 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423699 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105454 a.u. The total Lambda pseudoenergy is -0.395285186227 a.u. Convergence information after 6 iterations: Largest element of residual vector : 0.20248739E-04. Largest element of DIIS residual : -0.15394276E-04. After 7 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000001167-0.0000105096 9 25 L2 AA 0.0000000005 0.0000009881 9 4 25 12 L2 AB 0.0000000003-0.0000020398 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423697 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105461 a.u. The total Lambda pseudoenergy is -0.395285403099 a.u. Convergence information after 7 iterations: Largest element of residual vector : -0.10509644E-04. Largest element of DIIS residual : 0.66488859E-05. After 8 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000560-0.0000053831 9 25 L2 AA 0.0000000002 0.0000003508 4 3 25 24 L2 AB 0.0000000001 0.0000010862 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105469 a.u. The total Lambda pseudoenergy is -0.395285642423 a.u. Convergence information after 8 iterations: Largest element of residual vector : -0.53830599E-05. Largest element of DIIS residual : -0.33726938E-05. After 9 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000259-0.0000023033 9 25 L2 AA 0.0000000001-0.0000001091 9 3 25 12 L2 AB 0.0000000001 0.0000008619 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423693 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105471 a.u. The total Lambda pseudoenergy is -0.395285764301 a.u. Convergence information after 9 iterations: Largest element of residual vector : -0.23032988E-05. Largest element of DIIS residual : -0.10251488E-05. After 10 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000080-0.0000006707 8 25 L2 AA 0.0000000000-0.0000000508 9 5 25 12 L2 AB 0.0000000000 0.0000003698 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423693 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105471 a.u. The total Lambda pseudoenergy is -0.395285733226 a.u. Convergence information after 10 iterations: Largest element of residual vector : -0.67073450E-06. Largest element of DIIS residual : -0.30882700E-06. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01252 [ 4 14 ] 0.00903 [ 4 17 ]-0.00665 [ 3 13 ]-0.00653 [ 4 12 ]-0.00623 [ 3 18 ] 0.00600 [ 5 14 ] 0.00539 [ 5 11 ] 0.00528 [ 3 14 ] 0.00494 [ 3 10 ] 0.00490 [ 9 24 ]-0.00488 [ 9 26 ] 0.00443 [ 7 25 ]-0.00430 [ 4 20 ]-0.00428 [ 5 10 ]-0.00425 ----------------------------------------------------------------------------- Norm of L1AA vector ( 130 symmetry allowed elements): 0.0301902752. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05628 [ 3 3 25 25]-0.03693 [ 4 3 25 25]-0.03335 [ 3 4 25 25]-0.03335 [ 4 4 25 24] 0.03081 [ 4 4 24 25] 0.03081 [ 5 5 25 25]-0.02845 [ 5 5 27 27]-0.02404 [ 5 4 25 25]-0.02292 [ 4 5 25 25]-0.02292 [ 9 9 12 12]-0.02186 [ 5 5 24 24]-0.02106 [ 4 4 24 24]-0.02086 [ 5 4 24 25] 0.01931 [ 4 5 25 24] 0.01931 ----------------------------------------------------------------------------- Norm of L2AB vector ( 34061 symmetry allowed elements): 0.3048536563. ----------------------------------------------------------------------------- After 11 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000024-0.0000002225 8 25 L2 AA 0.0000000000-0.0000000235 5 3 25 24 L2 AB 0.0000000000 0.0000000905 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423693 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285680307 a.u. Convergence information after 11 iterations: Largest element of residual vector : -0.22248796E-06. Largest element of DIIS residual : -0.11613590E-06. After 12 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000008-0.0000000706 8 25 L2 AA 0.0000000000-0.0000000065 5 3 25 24 L2 AB 0.0000000000-0.0000000238 5 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285666797 a.u. Convergence information after 12 iterations: Largest element of residual vector : -0.70590995E-07. Largest element of DIIS residual : -0.38965337E-07. After 13 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000003-0.0000000275 8 25 L2 AA 0.0000000000-0.0000000018 4 3 25 24 L2 AB 0.0000000000-0.0000000122 4 5 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285666999 a.u. Convergence information after 13 iterations: Largest element of residual vector : -0.27534961E-07. Largest element of DIIS residual : -0.12649871E-07. After 14 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000001-0.0000000104 9 24 L2 AA 0.0000000000 0.0000000007 5 4 25 24 L2 AB 0.0000000000-0.0000000043 5 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668312 a.u. Convergence information after 14 iterations: Largest element of residual vector : -0.10383656E-07. Largest element of DIIS residual : -0.98047945E-08. After 15 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000001-0.0000000066 9 24 L2 AA 0.0000000000-0.0000000005 4 3 25 24 L2 AB 0.0000000000 0.0000000014 5 4 25 24 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668813 a.u. Convergence information after 15 iterations: Largest element of residual vector : -0.65720043E-08. Largest element of DIIS residual : 0.43243631E-08. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 8 24 ] 0.01252 [ 4 14 ] 0.00903 [ 4 17 ]-0.00665 [ 3 13 ]-0.00653 [ 4 12 ]-0.00623 [ 3 18 ] 0.00600 [ 5 14 ] 0.00539 [ 5 11 ] 0.00528 [ 3 14 ] 0.00494 [ 3 10 ] 0.00490 [ 9 24 ]-0.00488 [ 9 26 ] 0.00443 [ 7 25 ]-0.00430 [ 4 20 ]-0.00428 [ 5 10 ]-0.00425 ----------------------------------------------------------------------------- Norm of L1AA vector ( 130 symmetry allowed elements): 0.0301902534. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 4 4 25 25]-0.05628 [ 3 3 25 25]-0.03693 [ 4 3 25 25]-0.03335 [ 3 4 25 25]-0.03335 [ 4 4 25 24] 0.03081 [ 4 4 24 25] 0.03081 [ 5 5 25 25]-0.02845 [ 5 5 27 27]-0.02404 [ 5 4 25 25]-0.02292 [ 4 5 25 25]-0.02292 [ 9 9 12 12]-0.02186 [ 5 5 24 24]-0.02106 [ 4 4 24 24]-0.02086 [ 5 4 24 25] 0.01931 [ 4 5 25 24] 0.01931 ----------------------------------------------------------------------------- Norm of L2AB vector ( 34061 symmetry allowed elements): 0.3048535704. ----------------------------------------------------------------------------- After 16 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000-0.0000000038 9 24 L2 AA 0.0000000000-0.0000000003 4 3 25 24 L2 AB 0.0000000000 0.0000000006 3 3 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668882 a.u. Convergence information after 16 iterations: Largest element of residual vector : -0.37845681E-08. Largest element of DIIS residual : -0.22721418E-08. After 17 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000017 9 25 L2 AA 0.0000000000-0.0000000001 4 3 25 24 L2 AB 0.0000000000-0.0000000003 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668855 a.u. Convergence information after 17 iterations: Largest element of residual vector : 0.17323975E-08. Largest element of DIIS residual : 0.11705724E-08. After 18 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000008 9 25 L2 AA 0.0000000000 0.0000000000 9 3 25 12 L2 AB 0.0000000000-0.0000000002 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668844 a.u. Convergence information after 18 iterations: Largest element of residual vector : 0.80277069E-09. Largest element of DIIS residual : 0.21992810E-09. After 19 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000002 9 25 L2 AA 0.0000000000 0.0000000000 5 3 25 24 L2 AB 0.0000000000-0.0000000001 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668856 a.u. Convergence information after 19 iterations: Largest element of residual vector : 0.23390255E-09. Largest element of DIIS residual : 0.10609448E-09. After 20 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000001 8 25 L2 AA 0.0000000000 0.0000000000 9 5 25 12 L2 AB 0.0000000000 0.0000000000 4 4 25 25 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668859 a.u. Convergence information after 20 iterations: Largest element of residual vector : 0.74031441E-10. Largest element of DIIS residual : 0.41702810E-10. Amplitude equations converged in 20 iterations. The AA contribution to the Lambda pseudoenergy is: -0.0423694 a.u. The AB contribution to the Lambda pseudoenergy is: -0.3105470 a.u. The total Lambda pseudoenergy is -0.395285668870 a.u. Full Fbar is constructed for CCSD second derivatives s1 after singles, spin case 1 : 0.997860163584662 The AA contribution to the Lambda pseudoenergy is: 0.0000000 a.u. = 0.884340536509. A miracle has come to pass. The CC iterations have converged. @CHECKOUT-I, Total execution time : 2.5900 seconds. in runit xlambda 0 GETMEM: Allocated 152 MB of memory in. CCSD density and intermediates are calculated. The iterative expansion of D(ai) converged after 15 iterations. ---------------------------------------------------------------------- Natural orbital occupation numbers ---------------------------------------------------------------------- 1.99993 1.99992 1.98562 1.98039 1.97571 1.97285 1.96475 1.96257 1.93098 0.06642 0.02668 0.02668 0.01798 0.01590 0.01078 0.00966 0.00582 0.00537 0.00536 0.00473 0.00464 0.00434 0.00426 0.00391 0.00309 0.00276 0.00270 0.00102 0.00098 0.00070 0.00067 0.00063 0.00062 0.00058 0.00045 0.00040 0.00009 0.00006 Trace of density matrix : 18.0000000000. ---------------------------------------------------------------------- Density calculation successfully completed. @CHECKOUT-I, Total execution time : 0.2900 seconds. in runit xdens 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Evaluation of 1e integral derivatives required 0.03 seconds. Evaluation of 2e integral derivatives required 0.90 seconds. cpu in psphcrt 0.00000000000000D+000 cpu in intexp 0.00000000000000D+000 cpu in dfock 0.179999992251396 cpu in drsym2 1.00000500679016D-002 cpu in dplunk 2.99999713897705D-002 @CHECKOUT-I, Total execution time : 0.9200 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Coupled-perturbed HF (CPHF) equations are solved for RHF-CC/MBPT hessian and dipole derivatives. There are 7 perturbations within irrep 1. CPHF converged after 15 iterations. There are 8 perturbations within irrep 2. CPHF converged after 15 iterations. SCF static dipole polarizability -------------------------------- Ex Ey Ez Ex 16.121142 -1.313255 0.000000 Ey -1.313255 7.943198 0.000000 Ez 0.000000 0.000000 5.774857 SCF static dipole hyperpolarizability ------------------------------------- Ex Ey Ez xx 0.000000 0.000000 -6.276710 xy 0.000000 0.000000 7.954952 xz -6.276710 7.954952 0.000000 yy 0.000000 0.000000 -10.439900 yz 7.954952 -10.439900 0.000000 zz 0.000000 0.000000 -9.135585 @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xcphf 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 1 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 37382 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 145352 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 37187 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 144691 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 67819 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.2 seconds. Transformation of remaining indices required 0.1 seconds. 289382 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 1) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.27877731E-01. Largest element of DIIS residual : -0.27877731E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.14550074E-01. Largest element of DIIS residual : -0.10277643E-01. Convergence information after 3 iterations: Largest element of residual vector : -0.45518498E-02. Largest element of DIIS residual : 0.29567482E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.17490548E-02. Largest element of DIIS residual : -0.91465372E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.77369549E-03. Largest element of DIIS residual : 0.40740456E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.29139728E-03. Largest element of DIIS residual : 0.12853343E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.10434796E-03. Largest element of DIIS residual : 0.72748513E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.45323668E-04. Largest element of DIIS residual : -0.32412359E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.27095216E-04. Largest element of DIIS residual : 0.13306622E-04. Convergence information after 10 iterations: Largest element of residual vector : -0.10861318E-04. Largest element of DIIS residual : -0.72892473E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.43373667E-05. Largest element of DIIS residual : -0.17029073E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.12001859E-05. Largest element of DIIS residual : -0.67129976E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.35174396E-06. Largest element of DIIS residual : -0.19916736E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.13931091E-06. Largest element of DIIS residual : -0.99349797E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.56363877E-07. Largest element of DIIS residual : -0.35284879E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.31002414E-07. Largest element of DIIS residual : -0.20294432E-07. Convergence information after 17 iterations: Largest element of residual vector : -0.12841692E-07. Largest element of DIIS residual : -0.76258670E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.61666025E-08. Largest element of DIIS residual : -0.29728657E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.21474730E-08. Largest element of DIIS residual : 0.16162751E-08. Convergence information after 20 iterations: Largest element of residual vector : 0.12343480E-08. Largest element of DIIS residual : 0.42727392E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.49567968E-09. Largest element of DIIS residual : 0.22046578E-09. Convergence information after 22 iterations: Largest element of residual vector : 0.13510299E-09. Largest element of DIIS residual : -0.64828373E-10. Perturbed amplitude equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 25 25 -0.1636609211 ABAB 4 3 25 25 -0.0946084003 ABAB 3 4 25 25 -0.0946084003 ABAB 4 4 25 24 0.0761472442 ABAB 4 4 24 25 0.0761472442 ABAB 5 4 25 25 -0.0746481342 ABAB 4 5 25 25 -0.0746481342 ABAB 5 4 24 25 0.0611473577 ABAB 4 5 25 24 0.0611473577 ABAB 3 3 25 25 -0.0570450136 ABAB 4 4 38 25 0.0529521126 ABAB 4 4 25 38 0.0529521126 ABAB 5 5 25 25 -0.0510607113 ABAB 5 3 25 25 -0.0467904561 ABAB 3 5 25 25 -0.0467904561 ABAB 4 3 25 24 0.0448181212 ABAB 3 4 24 25 0.0448181212 ABAB 4 3 24 25 0.0436555382 ABAB 3 4 25 24 0.0436555382 ABAB 5 5 25 24 0.0412929610 ABAB Total CCSD gradient is -0.059817698915952. norm of converged amps 0.464128825531137 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.23362995E-01. Largest element of DIIS residual : -0.23362995E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.13500188E-01. Largest element of DIIS residual : -0.95847886E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.39994889E-02. Largest element of DIIS residual : 0.26375858E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.14769725E-02. Largest element of DIIS residual : -0.79895329E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.68602266E-03. Largest element of DIIS residual : 0.38442291E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.27273516E-03. Largest element of DIIS residual : 0.13087241E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.10419154E-03. Largest element of DIIS residual : 0.75057879E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.48804021E-04. Largest element of DIIS residual : -0.34688338E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.26577973E-04. Largest element of DIIS residual : 0.11877706E-04. Convergence information after 10 iterations: Largest element of residual vector : -0.10401946E-04. Largest element of DIIS residual : -0.64027854E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.34181078E-05. Largest element of DIIS residual : -0.17513417E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.92499015E-06. Largest element of DIIS residual : -0.53310803E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.33030858E-06. Largest element of DIIS residual : -0.20213922E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.11158524E-06. Largest element of DIIS residual : -0.10310003E-06. Convergence information after 15 iterations: Largest element of residual vector : -0.62708671E-07. Largest element of DIIS residual : -0.47126982E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.38968070E-07. Largest element of DIIS residual : -0.26916574E-07. Convergence information after 17 iterations: Largest element of residual vector : -0.17637716E-07. Largest element of DIIS residual : -0.80031973E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.68999249E-08. Largest element of DIIS residual : -0.29952938E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.31090426E-08. Largest element of DIIS residual : 0.21364065E-08. Convergence information after 20 iterations: Largest element of residual vector : 0.14152317E-08. Largest element of DIIS residual : 0.44122363E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.52782322E-09. Largest element of DIIS residual : 0.24235585E-09. Convergence information after 22 iterations: Largest element of residual vector : 0.14019279E-09. Largest element of DIIS residual : -0.54402737E-10. Perturbed Lambda equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 25 25 -0.1493587757 ABAB 4 3 25 25 -0.0866986399 ABAB 3 4 25 25 -0.0866986399 ABAB 4 4 25 24 0.0688377093 ABAB 4 4 24 25 0.0688377093 ABAB 5 4 25 25 -0.0686401527 ABAB 4 5 25 25 -0.0686401527 ABAB 5 4 24 25 0.0562290182 ABAB 4 5 25 24 0.0562290182 ABAB 3 3 25 25 -0.0506228117 ABAB 4 4 38 25 0.0503492211 ABAB 4 4 25 38 0.0503492211 ABAB 5 5 25 25 -0.0454301584 ABAB 5 3 25 25 -0.0427438543 ABAB 3 5 25 25 -0.0427438543 ABAB 4 3 25 24 0.0416718586 ABAB 3 4 24 25 0.0416718586 ABAB 4 3 24 25 0.0396104757 ABAB 3 4 25 24 0.0396104757 ABAB 5 4 25 24 0.0368602513 ABAB Total CCSD gradient is -0.041697693136750. The first-order density matrix is being calculated (Symmetry block 1, perturbation 1) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 1) dumpfc [ 1] 2.5187503863 [ 2] 0.0731077079 [ 3] 0.2256692488 [ 4] 0.0010698225 [ 5] 0.4265647938 [ 6]-0.2256692488 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0731077079 [ 14] 0.7936027352 [ 15]-0.2254097933 [ 16]-0.1419198440 [ 17]-0.3887788598 [ 18] 0.2254097933 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.2256692488 [ 26]-0.2254097933 [ 27] 0.2275416537 [ 28]-0.0947280375 [ 29] 0.2559200415 [ 30]-0.2275416537 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0010698225 [ 38]-0.1419198440 [ 39]-0.0947280375 [ 40] 0.1447738090 [ 41]-0.1607100704 [ 42] 0.0947280375 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.4265647938 [ 50]-0.3887788598 [ 51] 0.2559200415 [ 52]-0.1607100704 [ 53] 0.4665606588 [ 54]-0.2559200415 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.2256692488 [ 62] 0.2254097933 [ 63]-0.2275416537 [ 64] 0.0947280375 [ 65]-0.2559200415 [ 66] 0.2275416537 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants -0.2119093765 -0.0026003066 -0.0245068454 0.0172779886 -0.0330657893 0.0245068454 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0241944567 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.2700 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.03 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0718191797 O #1 y 0.0236498875 O #1 z -0.0196453584 H #2 x -0.0036234763 H #2 y -0.0206606650 H #2 z 0.0196453584 O #1 1 0.0359095898 0.0118249438 -0.0098226792 O #1 2 -0.0359095898 -0.0118249438 -0.0098226792 H #2 1 -0.0018117382 -0.0103303325 0.0098226792 H #2 2 0.0018117382 0.0103303325 0.0098226792 Evaluation of 2e integral derivatives required -2.22 seconds. contribution to Hessian 0.0718191797 0.0236498875 -0.0196453584 -0.0036234763 -0.0206606650 0.0196453584 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 4.00000065565109D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 3.00000458955765D-002 cpu in dplunk 9.99999046325684D-003 @CHECKOUT-I, Total execution time : 0.7200 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 2 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 37382 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 145352 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 37187 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 144691 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 67819 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.2 seconds. Transformation of remaining indices required 0.1 seconds. 289382 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 2) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 2) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.28187269E-01. Largest element of DIIS residual : 0.28187269E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.84767616E-02. Largest element of DIIS residual : -0.39573095E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.59080432E-02. Largest element of DIIS residual : 0.39343742E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.26530327E-02. Largest element of DIIS residual : -0.17532014E-02. Convergence information after 5 iterations: Largest element of residual vector : 0.11858592E-02. Largest element of DIIS residual : 0.85201329E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.66813522E-03. Largest element of DIIS residual : -0.40960193E-03. Convergence information after 7 iterations: Largest element of residual vector : -0.29221035E-03. Largest element of DIIS residual : 0.96382421E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.82423144E-04. Largest element of DIIS residual : -0.39022568E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.19509631E-04. Largest element of DIIS residual : 0.10462032E-04. Convergence information after 10 iterations: Largest element of residual vector : 0.52742661E-05. Largest element of DIIS residual : -0.31687868E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.24406087E-05. Largest element of DIIS residual : -0.17386300E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.75876006E-06. Largest element of DIIS residual : -0.68194158E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.41784079E-06. Largest element of DIIS residual : -0.23017801E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.26676664E-06. Largest element of DIIS residual : -0.19867797E-06. Convergence information after 15 iterations: Largest element of residual vector : -0.11434348E-06. Largest element of DIIS residual : 0.86685278E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.58301426E-07. Largest element of DIIS residual : 0.27750150E-07. Convergence information after 17 iterations: Largest element of residual vector : 0.26624329E-07. Largest element of DIIS residual : 0.15195170E-07. Convergence information after 18 iterations: Largest element of residual vector : 0.96265535E-08. Largest element of DIIS residual : -0.42342696E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.28331529E-08. Largest element of DIIS residual : 0.15557494E-08. Convergence information after 20 iterations: Largest element of residual vector : -0.10202830E-08. Largest element of DIIS residual : -0.64002622E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.44202717E-09. Largest element of DIIS residual : 0.32202532E-09. Convergence information after 22 iterations: Largest element of residual vector : 0.20920950E-09. Largest element of DIIS residual : -0.10479504E-09. Convergence information after 23 iterations: Largest element of residual vector : 0.11460776E-09. Largest element of DIIS residual : 0.68448273E-10. Perturbed amplitude equations converged in 23 iterations. Dominant contributions to perturbed wavefunction: 5 5 24 24 -0.0295265036 ABAB 5 5 25 25 -0.0279997298 ABAB 5 4 24 25 0.0275477628 ABAB 4 5 25 24 0.0275477628 ABAB 5 4 25 25 -0.0274640078 ABAB 4 5 25 25 -0.0274640078 ABAB 5 3 24 25 0.0245283541 ABAB 3 5 25 24 0.0245283541 ABAB 5 5 25 24 0.0232317912 ABAB 5 5 24 25 0.0232317912 ABAB 3 3 25 25 -0.0222832686 ABAB 5 3 25 25 -0.0208599247 ABAB 3 5 25 25 -0.0208599247 ABAB 3 3 10 10 -0.0185580514 ABAB 8 3 10 25 -0.0181126251 ABAB 3 8 25 10 -0.0181126251 ABAB 5 4 25 24 0.0175518631 ABAB 4 5 24 25 0.0175518631 ABAB 8 8 27 27 0.0167633628 ABAB 5 5 27 24 -0.0157504040 ABAB Total CCSD gradient is -0.051932761305536. norm of converged amps 0.302680365941982 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.24189871E-01. Largest element of DIIS residual : 0.24189871E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.75140646E-02. Largest element of DIIS residual : 0.38372543E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.52925086E-02. Largest element of DIIS residual : 0.35089255E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.22867392E-02. Largest element of DIIS residual : -0.14974013E-02. Convergence information after 5 iterations: Largest element of residual vector : 0.10407418E-02. Largest element of DIIS residual : 0.75324336E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.57537152E-03. Largest element of DIIS residual : -0.36218510E-03. Convergence information after 7 iterations: Largest element of residual vector : -0.26209203E-03. Largest element of DIIS residual : 0.91270590E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.76045687E-04. Largest element of DIIS residual : -0.35068482E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.18491815E-04. Largest element of DIIS residual : 0.90201145E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.46452480E-05. Largest element of DIIS residual : -0.29046259E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.20177036E-05. Largest element of DIIS residual : -0.14896268E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.65502096E-06. Largest element of DIIS residual : -0.62195339E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.40037866E-06. Largest element of DIIS residual : -0.21210550E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.24957674E-06. Largest element of DIIS residual : -0.17517168E-06. Convergence information after 15 iterations: Largest element of residual vector : -0.10388071E-06. Largest element of DIIS residual : 0.78663166E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.53875959E-07. Largest element of DIIS residual : 0.25244633E-07. Convergence information after 17 iterations: Largest element of residual vector : 0.24267683E-07. Largest element of DIIS residual : 0.13733712E-07. Convergence information after 18 iterations: Largest element of residual vector : 0.87660852E-08. Largest element of DIIS residual : -0.36963830E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.24554720E-08. Largest element of DIIS residual : 0.12589643E-08. Convergence information after 20 iterations: Largest element of residual vector : -0.87990346E-09. Largest element of DIIS residual : -0.54362329E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.37451528E-09. Largest element of DIIS residual : 0.26136823E-09. Convergence information after 22 iterations: Largest element of residual vector : 0.17046641E-09. Largest element of DIIS residual : -0.83392428E-10. Perturbed Lambda equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 5 5 24 24 -0.0280375612 ABAB 5 5 25 25 -0.0262435000 ABAB 5 4 25 25 -0.0259124209 ABAB 4 5 25 25 -0.0259124209 ABAB 5 4 24 25 0.0258549986 ABAB 4 5 25 24 0.0258549986 ABAB 5 3 24 25 0.0230894647 ABAB 3 5 25 24 0.0230894647 ABAB 5 5 25 24 0.0215747417 ABAB 5 5 24 25 0.0215747417 ABAB 3 3 25 25 -0.0204365222 ABAB 5 3 25 25 -0.0196639946 ABAB 3 5 25 25 -0.0196639946 ABAB 3 3 10 10 -0.0176216470 ABAB 8 3 10 25 -0.0173123482 ABAB 3 8 25 10 -0.0173123482 ABAB 5 4 25 24 0.0168330474 ABAB 4 5 24 25 0.0168330474 ABAB 8 8 27 27 0.0166742358 ABAB 8 8 10 10 -0.0152238975 ABAB Total CCSD gradient is -0.045465840996040. The first-order density matrix is being calculated (Symmetry block 1, perturbation 2) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 2) dumpfc [ 1] 2.3786601895 [ 2] 0.0731077079 [ 3] 0.2256692488 [ 4] 0.0010698225 [ 5] 0.4265647938 [ 6]-0.2256692488 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.7936027352 [ 15]-0.2254097933 [ 16]-0.1419198440 [ 17]-0.3887788598 [ 18] 0.2254097933 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2254097933 [ 27] 0.2275416537 [ 28]-0.0947280375 [ 29] 0.2559200415 [ 30]-0.2275416537 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1419198440 [ 39]-0.0947280375 [ 40] 0.1447738090 [ 41]-0.1607100704 [ 42] 0.0947280375 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.3887788598 [ 51] 0.2559200415 [ 52]-0.1607100704 [ 53] 0.4665606588 [ 54]-0.2559200415 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2254097933 [ 63]-0.2275416537 [ 64] 0.0947280375 [ 65]-0.2559200415 [ 66] 0.2275416537 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0254436708 -0.0246744632 0.0258185521 -0.0050845954 0.0236332149 -0.0258185521 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0481226702 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.4300 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.03 seconds. Two-electron integral gradient ------------------------------ O #1 x -0.0043940899 O #1 y 0.0700050116 O #1 z -0.0093246437 H #2 x 0.0277502082 H #2 y -0.0560473863 H #2 z 0.0093246437 O #1 1 -0.0021970449 0.0350025058 -0.0046623218 O #1 2 0.0021970449 -0.0350025058 -0.0046623218 H #2 1 0.0138751041 -0.0280236932 0.0046623218 H #2 2 -0.0138751041 0.0280236932 0.0046623218 Evaluation of 2e integral derivatives required -2.23 seconds. contribution to Hessian -0.0043940899 0.0700050116 -0.0093246437 0.0277502082 -0.0560473863 0.0093246437 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 8.99999737739563D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.7100 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 4 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 29702 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.0 seconds. 145352 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 29612 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.0 seconds. 144691 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 54639 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.2 seconds. Transformation of remaining indices required 0.1 seconds. 289382 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 4) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 4) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.13526392E-01. Largest element of DIIS residual : -0.13526392E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.35621531E-02. Largest element of DIIS residual : -0.17034518E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.36042992E-02. Largest element of DIIS residual : -0.26208689E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.18716117E-02. Largest element of DIIS residual : 0.81750973E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.71477718E-03. Largest element of DIIS residual : -0.30333609E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.29086119E-03. Largest element of DIIS residual : 0.19350842E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.15623581E-03. Largest element of DIIS residual : 0.66471854E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.59800252E-04. Largest element of DIIS residual : 0.23724942E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.14420046E-04. Largest element of DIIS residual : 0.74544551E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.44867450E-05. Largest element of DIIS residual : 0.19139393E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.16895349E-05. Largest element of DIIS residual : 0.73934811E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.35117262E-06. Largest element of DIIS residual : 0.43677251E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.24820989E-06. Largest element of DIIS residual : 0.15266280E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.15368701E-06. Largest element of DIIS residual : 0.10921851E-06. Convergence information after 15 iterations: Largest element of residual vector : 0.59779525E-07. Largest element of DIIS residual : -0.32986147E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.27109260E-07. Largest element of DIIS residual : 0.15475800E-07. Convergence information after 17 iterations: Largest element of residual vector : -0.96716464E-08. Largest element of DIIS residual : -0.56460371E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.48316084E-08. Largest element of DIIS residual : -0.22999084E-08. Convergence information after 19 iterations: Largest element of residual vector : -0.11319228E-08. Largest element of DIIS residual : -0.76975998E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.58109157E-09. Largest element of DIIS residual : 0.27514015E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.23390555E-09. Largest element of DIIS residual : -0.14787578E-09. Convergence information after 22 iterations: Largest element of residual vector : -0.76583948E-10. Largest element of DIIS residual : 0.49744574E-10. Perturbed amplitude equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 37 25 0.0211662849 ABAB 4 4 25 37 0.0211662849 ABAB 4 4 33 25 -0.0189455991 ABAB 4 4 25 33 -0.0189455991 ABAB 3 3 25 25 0.0169293760 ABAB 9 0 24 0 -0.0168888103 AA 4 4 24 24 -0.0152185454 ABAB 4 4 38 25 -0.0151931692 ABAB 4 4 25 38 -0.0151931692 ABAB 4 3 25 25 0.0151321323 ABAB 3 4 25 25 0.0151321323 ABAB 4 4 37 24 -0.0130916832 ABAB 4 4 24 37 -0.0130916832 ABAB 4 4 32 25 0.0125612086 ABAB 4 4 25 32 0.0125612086 ABAB 5 0 10 0 -0.0124401202 AA 4 4 33 24 0.0119256600 ABAB 4 4 24 33 0.0119256600 ABAB 4 4 26 25 -0.0106135376 ABAB 4 4 25 26 -0.0106135376 ABAB Total CCSD gradient is -0.007017548155559. norm of converged amps 0.178569236662538 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.11090644E-01. Largest element of DIIS residual : -0.11090644E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.28859126E-02. Largest element of DIIS residual : -0.16161605E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.29808066E-02. Largest element of DIIS residual : -0.23532289E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.15524408E-02. Largest element of DIIS residual : 0.67632974E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.60932411E-03. Largest element of DIIS residual : -0.27287566E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.24305316E-03. Largest element of DIIS residual : 0.16590779E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.13230439E-03. Largest element of DIIS residual : 0.59482103E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.52790008E-04. Largest element of DIIS residual : 0.21378360E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.13307969E-04. Largest element of DIIS residual : 0.65864338E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.37546184E-05. Largest element of DIIS residual : 0.15525765E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.14572175E-05. Largest element of DIIS residual : 0.69346141E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.28116700E-06. Largest element of DIIS residual : 0.35710485E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.21280447E-06. Largest element of DIIS residual : 0.13054672E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.13660068E-06. Largest element of DIIS residual : 0.95377634E-07. Convergence information after 15 iterations: Largest element of residual vector : 0.54674017E-07. Largest element of DIIS residual : -0.36522678E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.26015827E-07. Largest element of DIIS residual : -0.12991774E-07. Convergence information after 17 iterations: Largest element of residual vector : -0.12252490E-07. Largest element of DIIS residual : -0.62256971E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.37356658E-08. Largest element of DIIS residual : -0.19739269E-08. Convergence information after 19 iterations: Largest element of residual vector : -0.13057843E-08. Largest element of DIIS residual : -0.81328826E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.58214019E-09. Largest element of DIIS residual : 0.22876488E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.22927893E-09. Largest element of DIIS residual : -0.16145510E-09. Convergence information after 22 iterations: Largest element of residual vector : -0.10031580E-09. Largest element of DIIS residual : -0.43350272E-10. Perturbed Lambda equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 37 25 0.0200335331 ABAB 4 4 25 37 0.0200335331 ABAB 4 4 33 25 -0.0179028627 ABAB 4 4 25 33 -0.0179028627 ABAB 3 3 25 25 0.0157524404 ABAB 4 4 38 25 -0.0143584568 ABAB 4 4 25 38 -0.0143584568 ABAB 4 3 25 25 0.0142665772 ABAB 3 4 25 25 0.0142665772 ABAB 4 4 24 24 -0.0142463719 ABAB 9 0 24 0 -0.0127294333 AA 4 4 37 24 -0.0123886641 ABAB 4 4 24 37 -0.0123886641 ABAB 4 4 32 25 0.0118501488 ABAB 4 4 25 32 0.0118501488 ABAB 4 4 33 24 0.0112502505 ABAB 4 4 24 33 0.0112502505 ABAB 4 4 26 25 -0.0098749915 ABAB 4 4 25 26 -0.0098749915 ABAB 5 4 25 37 0.0097899307 ABAB Total CCSD gradient is -0.006245655498814. The first-order density matrix is being calculated (Symmetry block 1, perturbation 4) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 4) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0010698225 [ 5] 0.4265647938 [ 6]-0.2256692488 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1419198440 [ 17]-0.3887788598 [ 18] 0.2254097933 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0947280375 [ 29] 0.2559200415 [ 30]-0.2275416537 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1447738090 [ 41]-0.1607100704 [ 42] 0.0947280375 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1607100704 [ 53] 0.4665606588 [ 54]-0.2559200415 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0947280375 [ 65]-0.2559200415 [ 66] 0.2275416537 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0161909577 -0.0038136361 0.0143089533 -0.0035813553 0.0189371098 -0.0143089533 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0199080053 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.2800 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x -0.0025364455 O #1 y 0.0264792489 O #1 z -0.0078139374 H #2 x 0.0092615638 H #2 y -0.0146674819 H #2 z 0.0078139374 O #1 1 -0.0012682227 0.0132396245 -0.0039069687 O #1 2 0.0012682227 -0.0132396245 -0.0039069687 H #2 1 0.0046307819 -0.0073337410 0.0039069687 H #2 2 -0.0046307819 0.0073337410 0.0039069687 Evaluation of 2e integral derivatives required -2.24 seconds. contribution to Hessian -0.0025364455 0.0264792489 -0.0078139374 0.0092615638 -0.0146674819 0.0078139374 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 3.00000458955765D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 1.00000202655792D-002 cpu in dplunk 9.99999046325684D-003 @CHECKOUT-I, Total execution time : 0.7000 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 5 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 29702 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.0 seconds. 145352 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 29612 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 144691 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 54639 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.2 seconds. Transformation of remaining indices required 0.1 seconds. 289382 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 5) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 5) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.17600558E-01. Largest element of DIIS residual : 0.17600558E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.55807027E-02. Largest element of DIIS residual : 0.23977113E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.41199571E-02. Largest element of DIIS residual : 0.34009433E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.20539449E-02. Largest element of DIIS residual : 0.49615857E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.57908284E-03. Largest element of DIIS residual : 0.17140601E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.14167237E-03. Largest element of DIIS residual : -0.10194920E-03. Convergence information after 7 iterations: Largest element of residual vector : -0.70494926E-04. Largest element of DIIS residual : 0.42699354E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.38450159E-04. Largest element of DIIS residual : -0.27373701E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.18479618E-04. Largest element of DIIS residual : 0.93319659E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.54187048E-05. Largest element of DIIS residual : 0.36064862E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.22639134E-05. Largest element of DIIS residual : 0.99183762E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.65445865E-06. Largest element of DIIS residual : 0.47908140E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.27588243E-06. Largest element of DIIS residual : 0.15703766E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.11994993E-06. Largest element of DIIS residual : -0.64469048E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.33549227E-07. Largest element of DIIS residual : 0.23329368E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.13371768E-07. Largest element of DIIS residual : 0.49910576E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.56049576E-08. Largest element of DIIS residual : 0.39794486E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.29700922E-08. Largest element of DIIS residual : -0.14843953E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.14835734E-08. Largest element of DIIS residual : -0.74491068E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.64434106E-09. Largest element of DIIS residual : -0.55164921E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.31303111E-09. Largest element of DIIS residual : -0.96606733E-10. Perturbed amplitude equations converged in 21 iterations. Dominant contributions to perturbed wavefunction: 5 0 10 0 0.0199614549 AA 8 3 10 25 0.0156594116 ABAB 3 8 25 10 0.0156594116 ABAB 8 8 23 11 -0.0149349564 ABAB 8 8 11 23 -0.0149349564 ABAB 3 3 10 10 0.0147893123 ABAB 8 8 10 10 0.0139495006 ABAB 8 8 11 10 -0.0134451327 ABAB 8 8 10 11 -0.0134451327 ABAB 8 3 23 26 -0.0130922563 ABAB 3 8 26 23 -0.0130922563 ABAB 3 3 25 25 0.0130399235 ABAB 8 5 10 24 -0.0128453591 ABAB 5 8 24 10 -0.0128453591 ABAB 3 3 23 11 -0.0121875138 ABAB 3 3 11 23 -0.0121875138 ABAB 5 3 10 10 -0.0117909219 ABAB 3 5 10 10 -0.0117909219 ABAB 8 3 23 25 0.0116240177 ABAB 3 8 25 23 0.0116240177 ABAB Total CCSD gradient is 0.035983577153212. norm of converged amps 0.224448693106770 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.15005608E-01. Largest element of DIIS residual : 0.15005608E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.48994004E-02. Largest element of DIIS residual : 0.21767817E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.36229731E-02. Largest element of DIIS residual : 0.31470558E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.18127970E-02. Largest element of DIIS residual : 0.50083934E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.53289148E-03. Largest element of DIIS residual : 0.16946638E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.12671243E-03. Largest element of DIIS residual : -0.84322430E-04. Convergence information after 7 iterations: Largest element of residual vector : -0.58709198E-04. Largest element of DIIS residual : 0.35549111E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.32702142E-04. Largest element of DIIS residual : -0.23409349E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.15943994E-04. Largest element of DIIS residual : 0.86715639E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.51061157E-05. Largest element of DIIS residual : 0.31006941E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.21128716E-05. Largest element of DIIS residual : 0.94471099E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.57786908E-06. Largest element of DIIS residual : -0.46288978E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.28184912E-06. Largest element of DIIS residual : 0.15588962E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.13584970E-06. Largest element of DIIS residual : -0.81569144E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.44622090E-07. Largest element of DIIS residual : 0.33830441E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.21044041E-07. Largest element of DIIS residual : 0.12537541E-07. Convergence information after 17 iterations: Largest element of residual vector : 0.11449945E-07. Largest element of DIIS residual : 0.88803087E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.63245780E-08. Largest element of DIIS residual : -0.47167688E-08. Convergence information after 19 iterations: Largest element of residual vector : -0.27250727E-08. Largest element of DIIS residual : 0.12091520E-08. Convergence information after 20 iterations: Largest element of residual vector : -0.11494399E-08. Largest element of DIIS residual : -0.74556174E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.34355939E-09. Largest element of DIIS residual : 0.20586858E-09. Convergence information after 22 iterations: Largest element of residual vector : 0.11758555E-09. Largest element of DIIS residual : -0.79080283E-10. Perturbed Lambda equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 5 0 10 0 0.0166986006 AA 8 3 10 25 0.0150126866 ABAB 3 8 25 10 0.0150126866 ABAB 8 8 23 11 -0.0147297037 ABAB 8 8 11 23 -0.0147297037 ABAB 3 3 10 10 0.0140778641 ABAB 8 8 10 10 0.0136106470 ABAB 8 8 11 10 -0.0131126146 ABAB 8 8 10 11 -0.0131126146 ABAB 8 3 23 26 -0.0128106242 ABAB 3 8 26 23 -0.0128106242 ABAB 8 5 10 24 -0.0123475841 ABAB 5 8 24 10 -0.0123475841 ABAB 3 3 25 25 0.0123229361 ABAB 3 3 23 11 -0.0118878228 ABAB 3 3 11 23 -0.0118878228 ABAB 8 3 23 25 0.0113203579 ABAB 3 8 25 23 0.0113203579 ABAB 5 3 10 10 -0.0112947418 ABAB 3 5 10 10 -0.0112947418 ABAB Total CCSD gradient is 0.032696176011086. The first-order density matrix is being calculated (Symmetry block 1, perturbation 5) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 14 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 5) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.4265647938 [ 6]-0.2256692488 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.3887788598 [ 18] 0.2254097933 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2559200415 [ 30]-0.2275416537 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1607100704 [ 42] 0.0947280375 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4665606588 [ 54]-0.2559200415 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2559200415 [ 66] 0.2275416537 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0679210362 0.0271359744 -0.0295879319 0.0239766987 -0.0258019878 0.0295879319 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0446193348 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.1600 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0141945819 O #1 y -0.0595501458 O #1 z 0.0178420350 H #2 x -0.0197070708 H #2 y 0.0526450089 H #2 z -0.0178420350 O #1 1 0.0070972909 -0.0297750729 0.0089210175 O #1 2 -0.0070972909 0.0297750729 0.0089210175 H #2 1 -0.0098535354 0.0263225044 -0.0089210175 H #2 2 0.0098535354 -0.0263225044 -0.0089210175 Evaluation of 2e integral derivatives required -2.24 seconds. contribution to Hessian 0.0141945819 -0.0595501458 0.0178420350 -0.0197070708 0.0526450089 -0.0178420350 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 1.00000053644180D-002 cpu in intexp 3.00000011920929D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.7100 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 6 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 29550 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.0 seconds. 145352 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 29475 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.0 seconds. 144691 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 54450 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.2 seconds. Transformation of remaining indices required 0.1 seconds. 289382 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 6) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 6) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.14463300E-01. Largest element of DIIS residual : -0.14463300E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.40494723E-02. Largest element of DIIS residual : 0.21688876E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.37434495E-02. Largest element of DIIS residual : -0.29998482E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.20402406E-02. Largest element of DIIS residual : -0.66179134E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.75825630E-03. Largest element of DIIS residual : -0.29658373E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.28112643E-03. Largest element of DIIS residual : 0.18094450E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.13444225E-03. Largest element of DIIS residual : 0.71052997E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.70785082E-04. Largest element of DIIS residual : 0.37796810E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.23975042E-04. Largest element of DIIS residual : -0.78818079E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.54729854E-05. Largest element of DIIS residual : -0.32907504E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.22205282E-05. Largest element of DIIS residual : -0.10696897E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.59054697E-06. Largest element of DIIS residual : 0.43494193E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.29764515E-06. Largest element of DIIS residual : -0.19847489E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.13150693E-06. Largest element of DIIS residual : 0.40892753E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.24018150E-07. Largest element of DIIS residual : -0.18233449E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.13020786E-07. Largest element of DIIS residual : -0.37576371E-08. Convergence information after 17 iterations: Largest element of residual vector : -0.47614214E-08. Largest element of DIIS residual : -0.18267857E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.11301689E-08. Largest element of DIIS residual : -0.25960023E-09. Convergence information after 19 iterations: Largest element of residual vector : -0.46874861E-09. Largest element of DIIS residual : -0.28365423E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.23836243E-09. Largest element of DIIS residual : -0.78233557E-10. Perturbed amplitude equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 9 0 24 0 -0.0146202552 AA 3 3 10 10 -0.0140861595 ABAB 3 3 23 11 0.0103357255 ABAB 3 3 11 23 0.0103357255 ABAB 3 3 11 10 0.0098004914 ABAB 3 3 10 11 0.0098004914 ABAB 3 3 25 24 -0.0095874707 ABAB 3 3 24 25 -0.0095874707 ABAB 9 3 23 26 -0.0091829698 ABAB 3 9 26 23 -0.0091829698 ABAB 9 3 26 11 0.0091780273 ABAB 3 9 11 26 0.0091780273 ABAB 8 3 10 25 -0.0090652902 ABAB 3 8 25 10 -0.0090652902 ABAB 5 0 10 0 -0.0089900152 AA 8 3 26 23 0.0089696301 ABAB 3 8 23 26 0.0089696301 ABAB 8 3 25 10 -0.0086625531 ABAB 3 8 10 25 -0.0086625531 ABAB 9 3 11 26 0.0085251920 ABAB Total CCSD gradient is -0.023639072008822. norm of converged amps 0.174374639474962 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.12327619E-01. Largest element of DIIS residual : -0.12327619E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.35297825E-02. Largest element of DIIS residual : 0.20222503E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.32784021E-02. Largest element of DIIS residual : -0.27953052E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.17842410E-02. Largest element of DIIS residual : -0.64340031E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.67963738E-03. Largest element of DIIS residual : -0.27279914E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.24246433E-03. Largest element of DIIS residual : 0.15130313E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.11239884E-03. Largest element of DIIS residual : 0.64879106E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.62508039E-04. Largest element of DIIS residual : 0.34380583E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.22119037E-04. Largest element of DIIS residual : -0.70419901E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.53002639E-05. Largest element of DIIS residual : -0.27282678E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.19733823E-05. Largest element of DIIS residual : -0.10028096E-05. Convergence information after 12 iterations: Largest element of residual vector : -0.54904360E-06. Largest element of DIIS residual : 0.43773527E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.27512894E-06. Largest element of DIIS residual : -0.17247038E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.15324968E-06. Largest element of DIIS residual : 0.83280050E-07. Convergence information after 15 iterations: Largest element of residual vector : 0.42337231E-07. Largest element of DIIS residual : -0.29693851E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.20944870E-07. Largest element of DIIS residual : -0.11313070E-07. Convergence information after 17 iterations: Largest element of residual vector : -0.11200599E-07. Largest element of DIIS residual : -0.69148839E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.47841088E-08. Largest element of DIIS residual : -0.19583600E-08. Convergence information after 19 iterations: Largest element of residual vector : -0.18413261E-08. Largest element of DIIS residual : 0.81088369E-09. Convergence information after 20 iterations: Largest element of residual vector : 0.59598961E-09. Largest element of DIIS residual : 0.39838157E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.22767375E-09. Largest element of DIIS residual : 0.75470859E-10. Perturbed Lambda equations converged in 21 iterations. Dominant contributions to perturbed wavefunction: 3 3 10 10 -0.0134912495 ABAB 9 0 24 0 -0.0117648635 AA 3 3 23 11 0.0100903856 ABAB 3 3 11 23 0.0100903856 ABAB 3 3 11 10 0.0094028605 ABAB 3 3 10 11 0.0094028605 ABAB 3 3 25 24 -0.0092833081 ABAB 3 3 24 25 -0.0092833081 ABAB 9 3 23 26 -0.0089592404 ABAB 3 9 26 23 -0.0089592404 ABAB 9 3 26 11 0.0087658056 ABAB 3 9 11 26 0.0087658056 ABAB 8 3 26 23 0.0087610930 ABAB 3 8 23 26 0.0087610930 ABAB 8 3 10 25 -0.0086917113 ABAB 3 8 25 10 -0.0086917113 ABAB 8 3 25 10 -0.0083665870 ABAB 3 8 10 25 -0.0083665870 ABAB 3 3 37 26 0.0082071646 ABAB 3 3 26 37 0.0082071646 ABAB Total CCSD gradient is -0.021483574705440. The first-order density matrix is being calculated (Symmetry block 1, perturbation 6) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 1, perturbation 6) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.3728383395 [ 6]-0.2256692488 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.4211930312 [ 18] 0.2254097933 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2441741446 [ 30]-0.2275416537 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1564404425 [ 42] 0.0947280375 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4934036799 [ 54]-0.2559200415 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2441741446 [ 66] 0.2275416537 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0486224209 -0.0328445216 0.0022864060 -0.0148092571 0.0290212174 -0.0022864060 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0372059681 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 6.8600 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0700 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x -0.0044702171 O #1 y 0.0163506132 O #1 z -0.0355900346 H #2 x 0.0083142412 H #2 y -0.0172753205 H #2 z 0.0355900346 O #1 1 -0.0022351085 0.0081753066 -0.0177950173 O #1 2 0.0022351085 -0.0081753066 -0.0177950173 H #2 1 0.0041571206 -0.0086376603 0.0177950173 H #2 2 -0.0041571206 0.0086376603 0.0177950173 Evaluation of 2e integral derivatives required -2.21 seconds. contribution to Hessian -0.0044702171 0.0163506132 -0.0355900346 0.0083142412 -0.0172753205 0.0355900346 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 1.99999958276749D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 9.99999046325684D-003 cpu in dplunk 2.99999937415123D-002 @CHECKOUT-I, Total execution time : 0.7300 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 9 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 138682 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.3 seconds. Transformation of remaining indices required 0.2 seconds. 579422 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 3) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 3) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.19897998E-01. Largest element of DIIS residual : -0.19897998E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.62122815E-02. Largest element of DIIS residual : 0.43242664E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.52148587E-02. Largest element of DIIS residual : 0.31689186E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.21852137E-02. Largest element of DIIS residual : 0.15463331E-02. Convergence information after 5 iterations: Largest element of residual vector : 0.86954968E-03. Largest element of DIIS residual : 0.44311375E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.45268297E-03. Largest element of DIIS residual : 0.25473622E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.18141436E-03. Largest element of DIIS residual : 0.63478791E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.54857283E-04. Largest element of DIIS residual : -0.24113646E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.12859252E-04. Largest element of DIIS residual : -0.70639126E-05. Convergence information after 10 iterations: Largest element of residual vector : -0.39541550E-05. Largest element of DIIS residual : -0.33966435E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.17686139E-05. Largest element of DIIS residual : -0.10314745E-05. Convergence information after 12 iterations: Largest element of residual vector : 0.64823447E-06. Largest element of DIIS residual : -0.38443039E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.25553281E-06. Largest element of DIIS residual : -0.25486187E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.11146000E-06. Largest element of DIIS residual : -0.49527308E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.35128732E-07. Largest element of DIIS residual : -0.25584207E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.13540280E-07. Largest element of DIIS residual : -0.49883988E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.33312889E-08. Largest element of DIIS residual : 0.26516890E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.16180598E-08. Largest element of DIIS residual : 0.60351045E-09. Convergence information after 19 iterations: Largest element of residual vector : 0.59662327E-09. Largest element of DIIS residual : 0.39839575E-09. Convergence information after 20 iterations: Largest element of residual vector : 0.24372625E-09. Largest element of DIIS residual : 0.56266787E-10. Perturbed amplitude equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 9 4 25 25 0.0360898714 ABAB 4 9 25 25 0.0360898714 ABAB 9 4 24 25 -0.0273662180 ABAB 4 9 25 24 -0.0273662180 ABAB 9 3 24 25 -0.0242605679 ABAB 3 9 25 24 -0.0242605679 ABAB 9 3 25 25 0.0237149499 ABAB 3 9 25 25 0.0237149499 ABAB 9 4 25 24 -0.0215682830 ABAB 4 9 24 25 -0.0215682830 ABAB 9 9 25 12 -0.0198849908 ABAB 9 9 12 25 -0.0198849908 ABAB 9 9 24 12 0.0165719456 ABAB 9 9 12 24 0.0165719456 ABAB 9 5 25 25 0.0164507790 ABAB 5 9 25 25 0.0164507790 ABAB 9 5 25 24 -0.0158096335 ABAB 5 9 24 25 -0.0158096335 ABAB 3 3 25 10 0.0155858730 ABAB 3 3 10 25 0.0155858730 ABAB norm of converged amps 0.266648746734477 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.17212787E-01. Largest element of DIIS residual : -0.17212787E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.54936689E-02. Largest element of DIIS residual : 0.40926688E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.46563888E-02. Largest element of DIIS residual : 0.29070300E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.19409942E-02. Largest element of DIIS residual : 0.12904193E-02. Convergence information after 5 iterations: Largest element of residual vector : 0.75168086E-03. Largest element of DIIS residual : 0.39133752E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.38664147E-03. Largest element of DIIS residual : 0.22583260E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.16260746E-03. Largest element of DIIS residual : 0.60934383E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.50560188E-04. Largest element of DIIS residual : -0.23364043E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.12352688E-04. Largest element of DIIS residual : -0.59053762E-05. Convergence information after 10 iterations: Largest element of residual vector : -0.32959142E-05. Largest element of DIIS residual : -0.27655454E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.13462611E-05. Largest element of DIIS residual : -0.71486644E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.50787791E-06. Largest element of DIIS residual : -0.37425629E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.17267573E-06. Largest element of DIIS residual : -0.17597346E-06. Convergence information after 14 iterations: Largest element of residual vector : -0.83174593E-07. Largest element of DIIS residual : -0.52817576E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.32399350E-07. Largest element of DIIS residual : -0.22604987E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.12054938E-07. Largest element of DIIS residual : -0.49905971E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.36364151E-08. Largest element of DIIS residual : 0.27401515E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.17720321E-08. Largest element of DIIS residual : 0.64826459E-09. Convergence information after 19 iterations: Largest element of residual vector : 0.66504271E-09. Largest element of DIIS residual : 0.39733536E-09. Convergence information after 20 iterations: Largest element of residual vector : 0.27038839E-09. Largest element of DIIS residual : -0.85102634E-10. Perturbed Lambda equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 9 4 25 25 0.0344681836 ABAB 4 9 25 25 0.0344681836 ABAB 9 4 24 25 -0.0259710106 ABAB 4 9 25 24 -0.0259710106 ABAB 9 3 24 25 -0.0231057171 ABAB 3 9 25 24 -0.0231057171 ABAB 9 3 25 25 0.0226007551 ABAB 3 9 25 25 0.0226007551 ABAB 9 4 25 24 -0.0206375265 ABAB 4 9 24 25 -0.0206375265 ABAB 9 9 25 12 -0.0189017720 ABAB 9 9 12 25 -0.0189017720 ABAB 9 9 24 12 0.0160401685 ABAB 9 9 12 24 0.0160401685 ABAB 9 5 25 25 0.0156250327 ABAB 5 9 25 25 0.0156250327 ABAB 3 3 25 10 0.0150072121 ABAB 3 3 10 25 0.0150072121 ABAB 9 5 25 24 -0.0149954679 ABAB 5 9 24 25 -0.0149954679 ABAB The first-order density matrix is being calculated (Symmetry block 2, perturbation 3) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 3) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.3728383395 [ 6]-0.1815170450 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.4211930312 [ 18] 0.2089158849 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2441741446 [ 30]-0.2608452823 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1564404425 [ 42] 0.0882330216 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4934036799 [ 54]-0.2441741446 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2441741446 [ 66] 0.2608452823 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0880777167 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2792581094 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6214552316 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0880777167 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2792581094 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.1642878704 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0071283689 0.0314056026 0.0188891447 0.0071283689 -0.0314056026 0.0032707966 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0208236331 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0472940869 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 6.9100 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #1 z 0.0000000000 H #2 x 0.0000000000 H #2 y 0.0000000000 H #2 z 0.0000000000 O #1 1 0.0059135488 -0.0043643409 0.0290098694 O #1 2 0.0059135488 -0.0043643409 -0.0290098694 H #2 1 -0.0059135488 0.0043643409 -0.0222962570 H #2 2 -0.0059135488 0.0043643409 0.0222962570 Evaluation of 2e integral derivatives required -2.23 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0118270977 -0.0087286817 0.0580197387 -0.0118270977 0.0087286817 -0.0445925139 cpu in psphcrt 9.99999046325684D-003 cpu in intexp 7.00000673532486D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 1.00000202655792D-002 cpu in dplunk 9.99999046325684D-003 @CHECKOUT-I, Total execution time : 0.7100 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 10 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 113250 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.3 seconds. Transformation of remaining indices required 0.2 seconds. 579422 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 4) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 4) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.14215223E-01. Largest element of DIIS residual : -0.14215223E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.39233550E-02. Largest element of DIIS residual : 0.18281444E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.35435947E-02. Largest element of DIIS residual : -0.23103913E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.16387330E-02. Largest element of DIIS residual : 0.84818658E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.49421785E-03. Largest element of DIIS residual : 0.22871936E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.23082173E-03. Largest element of DIIS residual : 0.10912415E-03. Convergence information after 7 iterations: Largest element of residual vector : 0.90636837E-04. Largest element of DIIS residual : 0.41681879E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.31471408E-04. Largest element of DIIS residual : 0.16578917E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.10322475E-04. Largest element of DIIS residual : 0.83236063E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.54671439E-05. Largest element of DIIS residual : 0.31527352E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.20997543E-05. Largest element of DIIS residual : 0.75766871E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.79475908E-06. Largest element of DIIS residual : 0.71516311E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.38015299E-06. Largest element of DIIS residual : -0.18724918E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.15228500E-06. Largest element of DIIS residual : 0.98228432E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.52485710E-07. Largest element of DIIS residual : -0.30270994E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.21283545E-07. Largest element of DIIS residual : -0.16566976E-07. Convergence information after 17 iterations: Largest element of residual vector : 0.10038467E-07. Largest element of DIIS residual : 0.65409997E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.57028977E-08. Largest element of DIIS residual : 0.31061456E-08. Convergence information after 19 iterations: Largest element of residual vector : 0.18093530E-08. Largest element of DIIS residual : -0.11270380E-08. Convergence information after 20 iterations: Largest element of residual vector : -0.94368454E-09. Largest element of DIIS residual : 0.30516212E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.37528906E-09. Largest element of DIIS residual : -0.19362447E-09. Convergence information after 22 iterations: Largest element of residual vector : -0.11986698E-09. Largest element of DIIS residual : -0.35804716E-10. Perturbed amplitude equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 25 23 0.0249622507 ABAB 4 4 23 25 0.0249622507 ABAB 4 4 25 18 -0.0200613090 ABAB 4 4 18 25 -0.0200613090 ABAB 5 0 24 0 -0.0182730145 AA 4 4 24 23 -0.0153885537 ABAB 4 4 23 24 -0.0153885537 ABAB 9 0 10 0 -0.0151135938 AA 8 4 24 25 -0.0142995478 ABAB 4 8 25 24 -0.0142995478 ABAB 5 4 25 23 0.0125576466 ABAB 4 5 23 25 0.0125576466 ABAB 4 4 24 18 0.0124982138 ABAB 4 4 18 24 0.0124982138 ABAB 4 3 25 23 0.0120797890 ABAB 3 4 23 25 0.0120797890 ABAB 4 3 23 25 0.0115655366 ABAB 3 4 25 23 0.0115655366 ABAB 8 3 24 25 -0.0113244949 ABAB 3 8 25 24 -0.0113244949 ABAB norm of converged amps 0.177922775810766 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.11918566E-01. Largest element of DIIS residual : -0.11918566E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.31547599E-02. Largest element of DIIS residual : -0.16673463E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.29788370E-02. Largest element of DIIS residual : -0.21169592E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.13913396E-02. Largest element of DIIS residual : 0.71448751E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.43775259E-03. Largest element of DIIS residual : 0.19387999E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.19680198E-03. Largest element of DIIS residual : 0.95561039E-04. Convergence information after 7 iterations: Largest element of residual vector : 0.77626807E-04. Largest element of DIIS residual : 0.37331740E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.28050239E-04. Largest element of DIIS residual : 0.13759418E-04. Convergence information after 9 iterations: Largest element of residual vector : 0.87892900E-05. Largest element of DIIS residual : 0.73921754E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.46910528E-05. Largest element of DIIS residual : 0.26425116E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.17749503E-05. Largest element of DIIS residual : 0.69213745E-06. Convergence information after 12 iterations: Largest element of residual vector : 0.60085049E-06. Largest element of DIIS residual : 0.56997738E-06. Convergence information after 13 iterations: Largest element of residual vector : 0.31417479E-06. Largest element of DIIS residual : -0.17209132E-06. Convergence information after 14 iterations: Largest element of residual vector : 0.13941744E-06. Largest element of DIIS residual : 0.90200506E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.53277777E-07. Largest element of DIIS residual : -0.33726633E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.24149016E-07. Largest element of DIIS residual : -0.12792549E-07. Convergence information after 17 iterations: Largest element of residual vector : 0.79614918E-08. Largest element of DIIS residual : -0.53450551E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.37644735E-08. Largest element of DIIS residual : -0.22339057E-08. Convergence information after 19 iterations: Largest element of residual vector : -0.17862545E-08. Largest element of DIIS residual : -0.13584453E-08. Convergence information after 20 iterations: Largest element of residual vector : -0.10111882E-08. Largest element of DIIS residual : -0.29362460E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.42388441E-09. Largest element of DIIS residual : -0.21490407E-09. Convergence information after 22 iterations: Largest element of residual vector : -0.14975896E-09. Largest element of DIIS residual : -0.47038081E-10. Perturbed Lambda equations converged in 22 iterations. Dominant contributions to perturbed wavefunction: 4 4 25 23 0.0236022689 ABAB 4 4 23 25 0.0236022689 ABAB 4 4 25 18 -0.0189506335 ABAB 4 4 18 25 -0.0189506335 ABAB 4 4 24 23 -0.0145570665 ABAB 4 4 23 24 -0.0145570665 ABAB 5 0 24 0 -0.0136235894 AA 8 4 24 25 -0.0135295972 ABAB 4 8 25 24 -0.0135295972 ABAB 5 4 25 23 0.0119087707 ABAB 4 5 23 25 0.0119087707 ABAB 4 4 24 18 0.0117992160 ABAB 4 4 18 24 0.0117992160 ABAB 4 3 25 23 0.0114047460 ABAB 3 4 23 25 0.0114047460 ABAB 9 0 10 0 -0.0112688251 AA 4 3 23 25 0.0109370234 ABAB 3 4 25 23 0.0109370234 ABAB 8 3 24 25 -0.0108501703 ABAB 3 8 25 24 -0.0108501703 ABAB The first-order density matrix is being calculated (Symmetry block 2, perturbation 4) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 4) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.3728383395 [ 6]-0.1815170450 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.4211930312 [ 18] 0.2089158849 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2441741446 [ 30]-0.2608452823 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1564404425 [ 42] 0.0882330216 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4934036799 [ 54]-0.2441741446 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2441741446 [ 66] 0.2608452823 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0833789879 [ 82]-0.1092850618 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2565811885 [ 94] 0.1589166927 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6983641150 [ 106] 0.0880777167 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0833789879 [ 118] 0.1092850618 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2565811885 [ 130]-0.1589166927 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.2056095877 [ 142] 0.1053975655 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0019587775 -0.0156037992 0.0084042931 0.0019587775 0.0156037992 -0.0098114904 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0236279411 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0369267676 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.2500 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #1 z 0.0000000000 H #2 x 0.0000000000 H #2 y 0.0000000000 H #2 z 0.0000000000 O #1 1 -0.0041227065 0.0071072986 -0.0065515109 O #1 2 -0.0041227065 0.0071072986 0.0065515109 H #2 1 0.0041227065 -0.0071072986 0.0035538294 H #2 2 0.0041227065 -0.0071072986 -0.0035538294 Evaluation of 2e integral derivatives required -2.22 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0082454130 0.0142145972 -0.0131030218 0.0082454130 -0.0142145972 0.0071076587 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 7.99999386072159D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 1.99999809265137D-002 cpu in dplunk 1.00000053644180D-002 @CHECKOUT-I, Total execution time : 0.7200 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 11 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 113250 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.3 seconds. Transformation of remaining indices required 0.2 seconds. 579422 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 5) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 5) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.17310693E-01. Largest element of DIIS residual : 0.17310693E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.46231884E-02. Largest element of DIIS residual : -0.23444802E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.37714463E-02. Largest element of DIIS residual : 0.30389867E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.18636014E-02. Largest element of DIIS residual : 0.48766760E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.58952974E-03. Largest element of DIIS residual : -0.21475442E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.19098842E-03. Largest element of DIIS residual : -0.14016435E-03. Convergence information after 7 iterations: Largest element of residual vector : -0.97945584E-04. Largest element of DIIS residual : -0.46915591E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.41061518E-04. Largest element of DIIS residual : -0.20495927E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.13549110E-04. Largest element of DIIS residual : 0.34549661E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.31525309E-05. Largest element of DIIS residual : 0.23758763E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.13667411E-05. Largest element of DIIS residual : -0.44722714E-06. Convergence information after 12 iterations: Largest element of residual vector : -0.60586987E-06. Largest element of DIIS residual : -0.52989194E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.34102475E-06. Largest element of DIIS residual : -0.90831453E-07. Convergence information after 14 iterations: Largest element of residual vector : -0.12588351E-06. Largest element of DIIS residual : -0.58208635E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.26478121E-07. Largest element of DIIS residual : 0.28616614E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.16346470E-07. Largest element of DIIS residual : 0.63434825E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.60158324E-08. Largest element of DIIS residual : 0.30569620E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.19615722E-08. Largest element of DIIS residual : -0.70537204E-09. Convergence information after 19 iterations: Largest element of residual vector : 0.41969657E-09. Largest element of DIIS residual : -0.29792489E-09. Convergence information after 20 iterations: Largest element of residual vector : 0.18107129E-09. Largest element of DIIS residual : -0.12135068E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.58417170E-10. Largest element of DIIS residual : 0.15719782E-10. Perturbed amplitude equations converged in 21 iterations. Dominant contributions to perturbed wavefunction: 5 0 24 0 0.0177645735 AA 9 0 10 0 0.0145009846 AA 8 3 10 10 0.0143339773 ABAB 3 8 10 10 0.0143339773 ABAB 3 3 25 10 0.0141425282 ABAB 3 3 10 25 0.0141425282 ABAB 8 3 23 11 -0.0134464206 ABAB 3 8 11 23 -0.0134464206 ABAB 3 3 26 23 -0.0128601157 ABAB 3 3 23 26 -0.0128601157 ABAB 5 3 24 10 -0.0127996615 ABAB 3 5 10 24 -0.0127996615 ABAB 8 5 11 23 0.0127698265 ABAB 5 8 23 11 0.0127698265 ABAB 8 5 10 11 0.0123510633 ABAB 5 8 11 10 0.0123510633 ABAB 3 3 25 23 0.0123389999 ABAB 3 3 23 25 0.0123389999 ABAB 8 5 24 24 -0.0123194632 ABAB 5 8 24 24 -0.0123194632 ABAB norm of converged amps 0.224599676824284 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : 0.14814778E-01. Largest element of DIIS residual : 0.14814778E-01. Convergence information after 2 iterations: Largest element of residual vector : 0.41538151E-02. Largest element of DIIS residual : -0.21443598E-02. Convergence information after 3 iterations: Largest element of residual vector : 0.33302170E-02. Largest element of DIIS residual : 0.28815994E-02. Convergence information after 4 iterations: Largest element of residual vector : 0.16405524E-02. Largest element of DIIS residual : 0.48540226E-03. Convergence information after 5 iterations: Largest element of residual vector : 0.53628578E-03. Largest element of DIIS residual : 0.18146183E-03. Convergence information after 6 iterations: Largest element of residual vector : 0.16684582E-03. Largest element of DIIS residual : -0.12100625E-03. Convergence information after 7 iterations: Largest element of residual vector : -0.84765373E-04. Largest element of DIIS residual : -0.44093148E-04. Convergence information after 8 iterations: Largest element of residual vector : -0.37844857E-04. Largest element of DIIS residual : -0.18810889E-04. Convergence information after 9 iterations: Largest element of residual vector : -0.12421983E-04. Largest element of DIIS residual : 0.30759390E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.28775945E-05. Largest element of DIIS residual : 0.21985100E-05. Convergence information after 11 iterations: Largest element of residual vector : 0.12509722E-05. Largest element of DIIS residual : 0.31534646E-06. Convergence information after 12 iterations: Largest element of residual vector : -0.50268429E-06. Largest element of DIIS residual : -0.45074545E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.27076787E-06. Largest element of DIIS residual : -0.79480974E-07. Convergence information after 14 iterations: Largest element of residual vector : -0.11349679E-06. Largest element of DIIS residual : -0.60817995E-07. Convergence information after 15 iterations: Largest element of residual vector : -0.27512114E-07. Largest element of DIIS residual : -0.11961598E-07. Convergence information after 16 iterations: Largest element of residual vector : -0.12213343E-07. Largest element of DIIS residual : -0.54682006E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.33885719E-08. Largest element of DIIS residual : 0.24709776E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.16609651E-08. Largest element of DIIS residual : -0.55670892E-09. Convergence information after 19 iterations: Largest element of residual vector : 0.48116297E-09. Largest element of DIIS residual : -0.22381381E-09. Convergence information after 20 iterations: Largest element of residual vector : 0.14085855E-09. Largest element of DIIS residual : 0.10351059E-09. Convergence information after 21 iterations: Largest element of residual vector : 0.54610394E-10. Largest element of DIIS residual : 0.25466059E-10. Perturbed Lambda equations converged in 21 iterations. Dominant contributions to perturbed wavefunction: 5 0 24 0 0.0156032225 AA 8 3 10 10 0.0137986323 ABAB 3 8 10 10 0.0137986323 ABAB 3 3 25 10 0.0135958866 ABAB 3 3 10 25 0.0135958866 ABAB 8 3 23 11 -0.0131307311 ABAB 3 8 11 23 -0.0131307311 ABAB 3 3 26 23 -0.0125620221 ABAB 3 3 23 26 -0.0125620221 ABAB 8 5 11 23 0.0125106026 ABAB 5 8 23 11 0.0125106026 ABAB 9 0 10 0 0.0122543489 AA 5 3 24 10 -0.0122398791 ABAB 3 5 10 24 -0.0122398791 ABAB 3 3 25 23 0.0120038200 ABAB 3 3 23 25 0.0120038200 ABAB 8 8 37 11 -0.0119882472 ABAB 8 8 11 37 -0.0119882472 ABAB 8 5 24 24 -0.0118113171 ABAB 5 8 24 24 -0.0118113171 ABAB The first-order density matrix is being calculated (Symmetry block 2, perturbation 5) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 5) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.3728383395 [ 6]-0.1815170450 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.4211930312 [ 18] 0.2089158849 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2441741446 [ 30]-0.2608452823 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1564404425 [ 42] 0.0882330216 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4934036799 [ 54]-0.2441741446 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2441741446 [ 66] 0.2608452823 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0833789879 [ 82]-0.1194892523 [ 83] 0.1589166927 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2565811885 [ 94] 0.1575274907 [ 95]-0.5049040536 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6983641150 [ 106] 0.0833789880 [ 107] 0.2792581094 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0833789879 [ 118] 0.1194892523 [ 119]-0.1589166927 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2565811885 [ 130]-0.1575274907 [ 131] 0.5049040536 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.2056095877 [ 142] 0.1026937338 [ 143]-0.2892363136 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0205738626 0.0299240595 -0.0414831904 0.0205738626 -0.0299240595 0.0300960764 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0097434842 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0833705221 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 7.0300 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #1 z 0.0000000000 H #2 x 0.0000000000 H #2 y 0.0000000000 H #2 z 0.0000000000 O #1 1 0.0095923303 -0.0252713077 0.0094031347 O #1 2 0.0095923303 -0.0252713077 -0.0094031347 H #2 1 -0.0095923303 0.0252713077 -0.0099743741 H #2 2 -0.0095923303 0.0252713077 0.0099743741 Evaluation of 2e integral derivatives required -2.22 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0191846606 -0.0505426155 0.0188062695 -0.0191846606 0.0505426155 -0.0199487482 cpu in psphcrt 9.99999046325684D-003 cpu in intexp 3.99999916553497D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.7200 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the CCSD level within the harmonic approximation. 12 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: RHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 113562 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.3 seconds. Transformation of remaining indices required 0.2 seconds. 579422 MO integral derivatives were written to file DERINT. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 6) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 6) Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.1 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.14106480E-01. Largest element of DIIS residual : -0.14106480E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.46051110E-02. Largest element of DIIS residual : 0.19050189E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.38704218E-02. Largest element of DIIS residual : -0.32318524E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.21264626E-02. Largest element of DIIS residual : -0.55361555E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.71006395E-03. Largest element of DIIS residual : -0.24083206E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.19839932E-03. Largest element of DIIS residual : -0.38954427E-04. Convergence information after 7 iterations: Largest element of residual vector : -0.39203109E-04. Largest element of DIIS residual : 0.26596297E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.14700287E-04. Largest element of DIIS residual : 0.62199918E-05. Convergence information after 9 iterations: Largest element of residual vector : 0.51598630E-05. Largest element of DIIS residual : 0.26054568E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.14475269E-05. Largest element of DIIS residual : -0.12406746E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.82944027E-06. Largest element of DIIS residual : -0.48685903E-06. Convergence information after 12 iterations: Largest element of residual vector : -0.35076079E-06. Largest element of DIIS residual : -0.22163744E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.15576948E-06. Largest element of DIIS residual : -0.73250318E-07. Convergence information after 14 iterations: Largest element of residual vector : 0.52355778E-07. Largest element of DIIS residual : 0.39473817E-07. Convergence information after 15 iterations: Largest element of residual vector : 0.26501734E-07. Largest element of DIIS residual : 0.16258019E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.13033164E-07. Largest element of DIIS residual : 0.63712773E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.39142221E-08. Largest element of DIIS residual : -0.20668627E-08. Convergence information after 18 iterations: Largest element of residual vector : -0.10459050E-08. Largest element of DIIS residual : -0.54017867E-09. Convergence information after 19 iterations: Largest element of residual vector : -0.64578423E-09. Largest element of DIIS residual : -0.35557686E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.29158718E-09. Largest element of DIIS residual : -0.97923797E-10. Perturbed amplitude equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 9 0 10 0 -0.0137047884 AA 3 3 25 10 -0.0119339030 ABAB 3 3 10 25 -0.0119339030 ABAB 3 3 25 23 -0.0099900940 ABAB 3 3 23 25 -0.0099900940 ABAB 3 3 26 23 0.0096238852 ABAB 3 3 23 26 0.0096238852 ABAB 8 3 11 23 0.0094991348 ABAB 3 8 23 11 0.0094991348 ABAB 9 3 10 10 0.0093006877 ABAB 3 9 10 10 0.0093006877 ABAB 3 3 37 11 0.0088868789 ABAB 3 3 11 37 0.0088868789 ABAB 9 3 23 11 -0.0088718374 ABAB 3 9 11 23 -0.0088718374 ABAB 8 3 10 10 -0.0086946900 ABAB 3 8 10 10 -0.0086946900 ABAB 3 3 26 10 0.0084171270 ABAB 3 3 10 26 0.0084171270 ABAB 9 3 11 11 0.0083455287 ABAB norm of converged amps 0.173310761330856 Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Convergence information after 1 iterations: Largest element of residual vector : -0.12063690E-01. Largest element of DIIS residual : -0.12063690E-01. Convergence information after 2 iterations: Largest element of residual vector : -0.41050416E-02. Largest element of DIIS residual : 0.17056280E-02. Convergence information after 3 iterations: Largest element of residual vector : -0.34317383E-02. Largest element of DIIS residual : -0.30256505E-02. Convergence information after 4 iterations: Largest element of residual vector : -0.18804082E-02. Largest element of DIIS residual : -0.55770772E-03. Convergence information after 5 iterations: Largest element of residual vector : -0.64881895E-03. Largest element of DIIS residual : -0.23091549E-03. Convergence information after 6 iterations: Largest element of residual vector : -0.17206106E-03. Largest element of DIIS residual : -0.35670152E-04. Convergence information after 7 iterations: Largest element of residual vector : -0.33801693E-04. Largest element of DIIS residual : 0.23974263E-04. Convergence information after 8 iterations: Largest element of residual vector : 0.13176814E-04. Largest element of DIIS residual : 0.58278435E-05. Convergence information after 9 iterations: Largest element of residual vector : 0.47594539E-05. Largest element of DIIS residual : 0.24608517E-05. Convergence information after 10 iterations: Largest element of residual vector : 0.13456101E-05. Largest element of DIIS residual : -0.10470358E-05. Convergence information after 11 iterations: Largest element of residual vector : -0.70092673E-06. Largest element of DIIS residual : -0.46157421E-06. Convergence information after 12 iterations: Largest element of residual vector : -0.31499614E-06. Largest element of DIIS residual : -0.18559963E-06. Convergence information after 13 iterations: Largest element of residual vector : -0.12833344E-06. Largest element of DIIS residual : -0.64994342E-07. Convergence information after 14 iterations: Largest element of residual vector : 0.50904892E-07. Largest element of DIIS residual : 0.40097354E-07. Convergence information after 15 iterations: Largest element of residual vector : 0.21396588E-07. Largest element of DIIS residual : 0.11200051E-07. Convergence information after 16 iterations: Largest element of residual vector : 0.93838774E-08. Largest element of DIIS residual : 0.46496642E-08. Convergence information after 17 iterations: Largest element of residual vector : 0.28961539E-08. Largest element of DIIS residual : -0.13024648E-08. Convergence information after 18 iterations: Largest element of residual vector : 0.84711120E-09. Largest element of DIIS residual : -0.39167362E-09. Convergence information after 19 iterations: Largest element of residual vector : -0.46854918E-09. Largest element of DIIS residual : -0.35345762E-09. Convergence information after 20 iterations: Largest element of residual vector : -0.23965567E-09. Largest element of DIIS residual : -0.10777623E-09. Convergence information after 21 iterations: Largest element of residual vector : -0.79586851E-10. Largest element of DIIS residual : -0.46984599E-10. Perturbed Lambda equations converged in 21 iterations. Dominant contributions to perturbed wavefunction: 3 3 25 10 -0.0115302073 ABAB 3 3 10 25 -0.0115302073 ABAB 9 0 10 0 -0.0115229694 AA 3 3 25 23 -0.0097335348 ABAB 3 3 23 25 -0.0097335348 ABAB 3 3 26 23 0.0094323815 ABAB 3 3 23 26 0.0094323815 ABAB 8 3 11 23 0.0093441276 ABAB 3 8 23 11 0.0093441276 ABAB 9 3 10 10 0.0089379670 ABAB 3 9 10 10 0.0089379670 ABAB 3 3 37 11 0.0086812126 ABAB 3 3 11 37 0.0086812126 ABAB 9 3 23 11 -0.0086375277 ABAB 3 9 11 23 -0.0086375277 ABAB 8 3 10 10 -0.0083801553 ABAB 3 8 10 10 -0.0083801553 ABAB 3 3 26 10 0.0081144823 ABAB 3 3 10 26 0.0081144823 ABAB 9 3 11 11 0.0079651472 ABAB The first-order density matrix is being calculated (Symmetry block 2, perturbation 6) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.1 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated (Symmetry block 2, perturbation 6) dumpfc [ 1] 2.3786601895 [ 2] 0.0941572888 [ 3] 0.2256692488 [ 4] 0.0147243347 [ 5] 0.3728383395 [ 6]-0.1815170450 [ 7] 0.0000000000 [ 8] 0.0000000000 [ 9] 0.0000000000 [ 10] 0.0000000000 [ 11] 0.0000000000 [ 12] 0.0000000000 [ 13] 0.0941572888 [ 14] 0.8389332836 [ 15]-0.2254097933 [ 16]-0.1192542312 [ 17]-0.4211930312 [ 18] 0.2089158849 [ 19] 0.0000000000 [ 20] 0.0000000000 [ 21] 0.0000000000 [ 22] 0.0000000000 [ 23] 0.0000000000 [ 24] 0.0000000000 [ 25] 0.1815170450 [ 26]-0.2089158849 [ 27] 0.2275416537 [ 28]-0.0882330216 [ 29] 0.2441741446 [ 30]-0.2608452823 [ 31] 0.0000000000 [ 32] 0.0000000000 [ 33] 0.0000000000 [ 34] 0.0000000000 [ 35] 0.0000000000 [ 36] 0.0000000000 [ 37] 0.0147243348 [ 38]-0.1192542312 [ 39]-0.0947280375 [ 40] 0.1504540175 [ 41]-0.1564404425 [ 42] 0.0882330216 [ 43] 0.0000000000 [ 44] 0.0000000000 [ 45] 0.0000000000 [ 46] 0.0000000000 [ 47] 0.0000000000 [ 48] 0.0000000000 [ 49] 0.3728383395 [ 50]-0.4211930312 [ 51] 0.2559200415 [ 52]-0.1564404425 [ 53] 0.4934036799 [ 54]-0.2441741446 [ 55] 0.0000000000 [ 56] 0.0000000000 [ 57] 0.0000000000 [ 58] 0.0000000000 [ 59] 0.0000000000 [ 60] 0.0000000000 [ 61]-0.1815170450 [ 62] 0.2089158849 [ 63]-0.2275416537 [ 64] 0.0882330216 [ 65]-0.2441741446 [ 66] 0.2608452823 [ 67] 0.0000000000 [ 68] 0.0000000000 [ 69] 0.0000000000 [ 70] 0.0000000000 [ 71] 0.0000000000 [ 72] 0.0000000000 [ 73] 0.0000000000 [ 74] 0.0000000000 [ 75] 0.0000000000 [ 76] 0.0000000000 [ 77] 0.0000000000 [ 78] 0.0000000000 [ 79] 0.1092850618 [ 80]-0.1589166927 [ 81]-0.0833789879 [ 82]-0.1194892523 [ 83] 0.1575274907 [ 84]-0.1053975655 [ 85] 0.0000000000 [ 86] 0.0000000000 [ 87] 0.0000000000 [ 88] 0.0000000000 [ 89] 0.0000000000 [ 90] 0.0000000000 [ 91]-0.1589166927 [ 92] 0.5049040536 [ 93]-0.2565811885 [ 94] 0.1575274907 [ 95]-0.5255226096 [ 96] 0.2892363136 [ 97] 0.0000000000 [ 98] 0.0000000000 [ 99] 0.0000000000 [ 100] 0.0000000000 [ 101] 0.0000000000 [ 102] 0.0000000000 [ 103]-0.0880777167 [ 104]-0.2792581094 [ 105] 0.6983641150 [ 106] 0.0833789880 [ 107] 0.2565811885 [ 108]-0.1642878704 [ 109] 0.0000000000 [ 110] 0.0000000000 [ 111] 0.0000000000 [ 112] 0.0000000000 [ 113] 0.0000000000 [ 114] 0.0000000000 [ 115]-0.1092850618 [ 116] 0.1589166927 [ 117] 0.0833789879 [ 118] 0.1194892523 [ 119]-0.1575274907 [ 120] 0.1053975655 [ 121] 0.0000000000 [ 122] 0.0000000000 [ 123] 0.0000000000 [ 124] 0.0000000000 [ 125] 0.0000000000 [ 126] 0.0000000000 [ 127] 0.1589166927 [ 128]-0.5049040536 [ 129] 0.2565811885 [ 130]-0.1575274907 [ 131] 0.5255226096 [ 132]-0.2892363136 [ 133] 0.0000000000 [ 134] 0.0000000000 [ 135] 0.0000000000 [ 136] 0.0000000000 [ 137] 0.0000000000 [ 138] 0.0000000000 [ 139]-0.1053975655 [ 140] 0.2892363136 [ 141]-0.2056095877 [ 142] 0.1026937338 [ 143]-0.2790889854 [ 144] 0.2435108581 CCSD contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0136684620 -0.0297653133 0.0010253218 -0.0136684620 0.0297653133 -0.0018441925 CCSD contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0128784048 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0495575922 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 6.9200 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.03 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #1 z 0.0000000000 H #2 x 0.0000000000 H #2 y 0.0000000000 H #2 z 0.0000000000 O #1 1 -0.0054823152 0.0098089926 -0.0211735195 O #1 2 -0.0054823152 0.0098089926 0.0211735195 H #2 1 0.0054823152 -0.0098089926 0.0179472332 H #2 2 0.0054823152 -0.0098089926 -0.0179472332 Evaluation of 2e integral derivatives required -2.25 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0109646303 0.0196179851 -0.0423470391 0.0109646303 -0.0196179851 0.0358944665 cpu in psphcrt 5.00000268220902D-002 cpu in intexp 4.00000438094139D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.6900 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. CCSD MO gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. CCSD MO gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0800 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 2 types of atoms 1 symmetry operations Rotation about the Z-axis Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 7 O #1 y 2 8 O #1 z 3 9 H #2 x 4 10 H #2 y 5 11 H #2 z 6 12 Cartesian Coordinates --------------------- Total number of coordinates: 12 1 O #1 1 x 1.3584116492 2 y 0.1981015588 3 z -0.0953819083 4 O #1 2 x -1.3584116492 5 y -0.1981015588 6 z -0.0953819083 7 H #2 1 x 1.8805810875 8 y -1.2787865436 9 z 0.8523870416 10 H #2 2 x -1.8805810875 11 y 1.2787865436 12 z 0.8523870416 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 6 Symmetry 1 1 O #1 x 1 - 4 2 O #1 y 2 - 5 3 O #1 z 3 + 6 4 H #2 x 7 - 10 5 H #2 y 8 - 11 6 H #2 z 9 + 12 Symmetry 2 7 O #1 x 1 + 4 8 O #1 y 2 + 5 9 O #1 z 3 - 6 10 H #2 x 7 + 10 11 H #2 y 8 + 11 12 H #2 z 9 - 12 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 20 20 Symmetry 1 1 O #1 s 1 + 2 2 O #1 s 3 + 4 3 O #1 s 5 + 6 4 O #1 x 7 - 8 5 O #1 x 9 - 10 6 O #1 y 11 - 12 7 O #1 y 13 - 14 8 O #1 z 15 + 16 9 O #1 z 17 + 18 10 O #1 xx 19 + 20 11 O #1 xy 21 + 22 12 O #1 xz 23 - 24 13 O #1 yy 25 + 26 14 O #1 yz 27 - 28 15 O #1 zz 29 + 30 16 H #2 s 31 + 32 17 H #2 s 33 + 34 18 H #2 x 35 - 36 19 H #2 y 37 - 38 20 H #2 z 39 + 40 Symmetry 2 21 O #1 s 1 - 2 22 O #1 s 3 - 4 23 O #1 s 5 - 6 24 O #1 x 7 + 8 25 O #1 x 9 + 10 26 O #1 y 11 + 12 27 O #1 y 13 + 14 28 O #1 z 15 - 16 29 O #1 z 17 - 18 30 O #1 xx 19 - 20 31 O #1 xy 21 - 22 32 O #1 xz 23 + 24 33 O #1 yy 25 - 26 34 O #1 yz 27 + 28 35 O #1 zz 29 - 30 36 H #2 s 31 - 32 37 H #2 s 33 - 34 38 H #2 x 35 + 36 39 H #2 y 37 + 38 40 H #2 z 39 - 40 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 7 perturbation 2 in 2 (y-translation) perturbation number: 8 perturbation 3 in 1 (z-translation) perturbation number: 3 relation for x-direction : 1 = - ( 4 ) relation for y-direction : 2 = - ( 5 ) relation for z-direction : 3 = - ( 6 ) 6 6 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -16.6060028048 O #1 y -5.9120421482 O #1 z 2.8116118886 H #2 x -2.6058705353 H #2 y 4.2931751851 H #2 z -2.8116118886 O #1 1 -8.3030014024 -2.9560210741 1.4058059443 O #1 2 8.3030014024 2.9560210741 1.4058059443 H #2 1 -1.3029352676 2.1465875926 -1.4058059443 H #2 2 1.3029352676 -2.1465875926 -1.4058059443 Kinetic energy integral gradient -------------------------------- O #1 x -0.0351850909 O #1 y -1.1873441626 O #1 z 0.7399046749 H #2 x -0.4120694666 H #2 y 1.1525953377 H #2 z -0.7399046749 O #1 1 -0.0175925454 -0.5936720813 0.3699523374 O #1 2 0.0175925454 0.5936720813 0.3699523374 H #2 1 -0.2060347333 0.5762976689 -0.3699523374 H #2 2 0.2060347333 -0.5762976689 -0.3699523374 Nuclear attraction integral gradient ------------------------------------ O #1 x 30.5261983861 O #1 y 15.7684519456 O #1 z -8.0506791331 H #2 x 6.0231742567 H #2 y -12.3601869253 H #2 z 8.0506791331 O #1 1 15.2630991931 7.8842259728 -4.0253395666 O #1 2 -15.2630991931 -7.8842259728 -4.0253395666 H #2 1 3.0115871283 -6.1800934626 4.0253395666 H #2 2 -3.0115871283 6.1800934626 4.0253395666 Reorthonormalization gradient ----------------------------- O #1 x -0.2130332187 O #1 y -0.6644402636 O #1 z 0.3784739067 H #2 x -0.1796888739 H #2 y 0.5869676648 H #2 z -0.3784739067 O #1 1 -0.1065166094 -0.3322201318 0.1892369534 O #1 2 0.1065166094 0.3322201318 0.1892369534 H #2 1 -0.0898444370 0.2934838324 -0.1892369534 H #2 2 0.0898444370 -0.2934838324 -0.1892369534 Kinetic energy integral Hessian ------------------------------- Symmetry 1 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x 0.859332 O #1 y -0.263173 -0.578288 O #1 z 0.347216 -0.914206 -0.765129 H #2 x 1.014867 0.528376 -0.325657 -1.111467 H #2 y 0.528376 -0.054926 0.908631 -0.496181 0.063135 H #2 z -0.347216 0.914206 0.765129 0.325657 -0.908631 -0.765129 Symmetry 2 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x -1.110048 O #1 y -0.497423 0.063632 O #1 z 0.347216 -0.914206 -1.373947 H #2 x 1.110048 0.497423 -0.347216 -1.110048 H #2 y 0.497423 -0.063632 0.914206 -0.497423 0.063632 H #2 z -0.325657 0.908631 0.779193 0.325657 -0.908631 -0.764757 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -0.062679 O #1 y -0.190149 -0.128664 O #1 z 0.173608 -0.457103 -0.534769 O #2 x -0.492345 -0.058562 0.000000 -0.062679 O #2 y -0.058562 0.160480 0.000000 -0.190149 -0.128664 O #2 z 0.000000 0.000000 0.152205 -0.173608 0.457103 -0.534769 H #1 x 0.531229 0.256450 -0.168218 0.023795 -0.007738 0.005390 H #1 y 0.256450 -0.029640 0.455709 -0.007738 -0.002176 -0.001394 H #1 z -0.168218 0.455709 0.386081 0.005390 -0.001394 -0.003516 H #2 x 0.023795 -0.007738 -0.005390 0.531229 0.256450 0.168218 H #2 y -0.007738 -0.002176 0.001394 0.256450 -0.029640 -0.455709 H #2 z -0.005390 0.001394 -0.003516 0.168218 -0.455709 0.386081 H #1 x H #1 y H #1 z H #2 x H #2 y H #2 z H #1 x -0.555379 H #1 y -0.248401 0.031692 H #1 z 0.162829 -0.454316 -0.382472 H #2 x 0.000355 -0.000311 0.000000 -0.555379 H #2 y -0.000311 0.000124 0.000000 -0.248401 0.031692 H #2 z 0.000000 0.000000 -0.000093 -0.162829 0.454316 -0.382472 Nuclear attraction integral Hessian ----------------------------------- Symmetry 1 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x -29.060445 O #1 y -5.765016 31.470772 O #1 z -2.065140 6.813204 9.029881 H #2 x -11.842667 -3.603146 3.052803 10.813608 H #2 y -3.447237 -2.270378 -7.306284 4.577764 2.460895 H #2 z 2.065140 -6.813204 -9.029881 -3.052803 7.306284 9.029881 Symmetry 2 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x 10.918439 O #1 y 4.427789 2.512631 O #1 z -2.113401 6.756843 37.951753 H #2 x -10.918439 -4.427789 2.113401 10.918439 H #2 y -4.427789 -2.512631 -6.756843 4.427789 2.512631 H #2 z 3.028843 -7.290237 -8.721351 -3.028843 7.290237 9.100218 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -4.535502 O #1 y -0.334307 8.495851 O #1 z -1.044635 3.392512 11.745408 O #2 x 9.994721 2.548201 -0.012065 -4.535502 O #2 y 2.548201 -7.239535 -0.014090 -0.334307 8.495851 O #2 z 0.012065 0.014090 -7.230468 1.044635 -3.392512 11.745408 H #1 x -5.690277 -2.007734 1.291551 0.231057 -0.206161 0.234850 H #1 y -1.968757 -1.195752 -3.515782 -0.245138 -0.060563 -0.137360 H #1 z 1.273496 -3.525860 -4.437808 0.240926 -0.119258 -0.077133 H #2 x 0.231057 -0.206161 -0.234850 -5.690277 -2.007734 -1.291551 H #2 y -0.245138 -0.060563 0.137360 -1.968757 -1.195752 3.515782 H #2 z -0.240926 0.119258 -0.077133 -1.273496 3.525860 -4.437808 H #1 x H #1 y H #1 z H #2 x H #2 y H #2 z H #1 x 5.433012 H #1 y 2.251388 1.243381 H #1 z -1.520412 3.649130 4.532525 H #2 x 0.026208 -0.037494 0.005990 5.433012 H #2 y -0.037494 0.012934 -0.004012 2.251388 1.243381 H #2 z -0.005990 0.004012 -0.017584 1.520412 -3.649130 4.532525 Highest order reorthonormalization Hessian ------------------------------------------ Symmetry 1 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x -0.466330 O #1 y 0.025415 -1.254748 O #1 z 0.085038 -0.228809 -0.629098 H #2 x 0.698614 0.129570 -0.071527 -0.727219 H #2 y 0.129570 0.443443 0.222679 -0.105892 -0.427925 H #2 z -0.085038 0.228809 0.629098 0.071527 -0.222679 -0.629098 Symmetry 2 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x -0.726227 O #1 y -0.107116 -0.427331 O #1 z 0.085038 -0.228809 -1.480275 H #2 x 0.726227 0.107116 -0.085038 -0.726227 H #2 y 0.107116 0.427331 0.228809 -0.107116 -0.427331 H #2 z -0.071527 0.222679 0.650729 0.071527 -0.222679 -0.628680 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -0.298139 O #1 y -0.020425 -0.420520 O #1 z 0.042519 -0.114404 -0.527343 O #2 x -0.064974 -0.033133 0.000000 -0.298139 O #2 y -0.033133 0.206854 0.000000 -0.020425 -0.420520 O #2 z 0.000000 0.000000 0.212794 -0.042519 0.114404 -0.527343 H #1 x 0.356210 0.059172 -0.039141 0.006903 -0.005614 0.003378 H #1 y 0.059172 0.217693 0.112872 -0.005614 -0.004028 -0.001533 H #1 z -0.039141 0.112872 0.319957 0.003378 -0.001533 -0.005408 H #2 x 0.006903 -0.005614 -0.003378 0.356210 0.059172 0.039141 H #2 y -0.005614 -0.004028 0.001533 0.059172 0.217693 -0.112872 H #2 z -0.003378 0.001533 -0.005408 0.039141 -0.112872 0.319957 H #1 x H #1 y H #1 z H #2 x H #2 y H #2 z H #1 x -0.363361 H #1 y -0.053252 -0.213814 H #1 z 0.035764 -0.111339 -0.314444 H #2 x 0.000248 -0.000306 0.000000 -0.363361 H #2 y -0.000306 0.000148 0.000000 -0.053252 -0.213814 H #2 z 0.000000 0.000000 -0.000105 -0.035764 0.111339 -0.314444 Electronic contributions to dipole moment ----------------------------------------- au Debye z 0.51704931 1.31422042 Conversion factor used: 1 Debye = 2.54177000 a.u. Electronic contributions to static part of dipole moment derivatives -------------------------------------------------------------------- Total dipole moment derivatives ------------------------------- Symmetry 1 Ez O #1 x -0.13903395 O #1 y 0.41702155 O #1 z -16.61352521 H #2 x 0.09104274 H #2 y -0.38247433 H #2 z -1.38647479 Symmetry 2 Ex Ey O #1 x -16.67198719 0.16502757 O #1 y 0.89427024 -16.93682874 O #1 z -0.60385843 0.40180132 H #2 x -1.32801281 -0.16502757 H #2 y -0.89427024 -1.06317126 H #2 z 0.55327071 -0.36717421 Ex Ey Ez O #11 x -8.335994 0.082514 -0.069517 O #11 y 0.447135 -8.468414 0.208511 O #11 z -0.301929 0.200901 -8.306763 O #12 x -8.335994 0.082514 0.069517 O #12 y 0.447135 -8.468414 -0.208511 O #12 z 0.301929 -0.200901 -8.306763 H #21 x -0.664006 -0.082514 0.045521 H #21 y -0.447135 -0.531586 -0.191237 H #21 z 0.276635 -0.183587 -0.693237 H #22 x -0.664006 -0.082514 -0.045521 H #22 y -0.447135 -0.531586 0.191237 H #22 z -0.276635 0.183587 -0.693237 Evaluation of 1e integral derivatives required 0.07 seconds. Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.03 seconds. Two-electron integral gradient ------------------------------ O #1 x -13.6719772717 O #1 y -8.0046253712 O #1 z 4.1206886629 H #2 x -2.8255453809 H #2 y 6.3274487377 H #2 z -4.1206886629 O #1 1 -6.8359886359 -4.0023126856 2.0603443315 O #1 2 6.8359886359 4.0023126856 2.0603443315 H #2 1 -1.4127726904 3.1637243688 -2.0603443315 H #2 2 1.4127726904 -3.1637243688 -2.0603443315 Two-electron integral Hessian ----------------------------- Symmetry 1 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x 4.868590 O #1 y 2.544370 -20.174710 O #1 z 0.717202 -2.742729 -6.817530 H #2 x 7.541259 1.631087 -1.277761 -7.520903 H #2 y 1.196187 4.312119 3.012820 -1.863077 -4.113787 H #2 z -0.717202 2.742729 6.817530 1.277761 -3.012820 -6.817530 Symmetry 2 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x -7.580274 O #1 y -1.767159 -4.204862 O #1 z 0.933319 -2.648690 -22.270800 H #2 x 7.580274 1.767159 -0.933319 -7.580274 H #2 y 1.767159 4.204862 2.648690 -1.767159 -4.204862 H #2 z -1.250616 2.966517 6.976535 1.250616 -2.966517 -6.866949 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -0.677921 O #1 y 0.194303 -6.094893 O #1 z 0.412630 -1.347855 -7.272083 O #2 x -3.112216 -1.077882 0.054029 -0.677921 O #2 y -1.077882 3.992462 0.023510 0.194303 -6.094893 O #2 z -0.054029 -0.023510 3.863318 -0.412630 1.347855 -7.272083 H #1 x 3.780383 0.849562 -0.552770 0.009754 0.034018 -0.086111 H #1 y 0.740837 2.129245 1.415377 0.142743 -0.026814 0.091033 H #1 z -0.491954 1.427311 3.448516 -0.133353 0.055947 -0.039751 H #2 x 0.009754 0.034018 0.086111 3.780383 0.849562 0.552770 H #2 y 0.142743 -0.026814 -0.091033 0.740837 2.129245 -1.415377 H #2 z 0.133353 -0.055947 -0.039751 0.491954 -1.427311 3.448516 H #1 x H #1 y H #1 z H #2 x H #2 y H #2 z H #1 x -3.775294 H #1 y -0.907559 -2.079662 H #1 z 0.632094 -1.494834 -3.421120 H #2 x -0.014843 0.023980 -0.006786 -3.775294 H #2 y 0.023980 -0.022769 0.011576 -0.907559 -2.079662 H #2 z 0.006786 -0.011576 0.012355 -0.632094 1.494834 -3.421120 Evaluation of 2e integral derivatives required 1.91 seconds. Molecular gradient ------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #1 z 0.0000000000 H #2 x 0.0000000000 H #2 y 0.0000000000 H #2 z 0.0000000000 O #1 1 0.0000000000 0.0000000000 0.0000000000 O #1 2 0.0000000000 0.0000000000 0.0000000000 H #2 1 0.0000000000 0.0000000000 0.0000000000 H #2 2 0.0000000000 0.0000000000 0.0000000000 Molecular gradient norm 0.271E-10 Molecular hessian ----------------- Symmetry 1 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x 1.116548 O #1 y -0.165328 0.928175 O #1 z 0.156789 -0.459278 0.285354 H #2 x -0.060721 0.065229 -0.128743 0.219981 H #2 y 0.278330 -0.732226 0.435814 -0.203100 0.696339 H #2 z -0.156789 0.459278 -0.285354 0.128743 -0.435814 0.285354 Symmetry 2 O #1 x O #1 y O #1 z H #2 x H #2 y H #2 z O #1 x 0.192190 O #1 y -0.201408 0.692398 O #1 z 0.059748 -0.469266 0.362136 H #2 x -0.192190 0.201408 -0.059748 0.192190 H #2 y 0.201408 -0.692398 0.469266 -0.201408 0.692398 H #2 z -0.140017 0.440473 -0.291695 0.140017 -0.440473 0.281268 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x 0.327185 O #1 y -0.091684 0.405143 O #1 z 0.054134 -0.232136 0.161872 O #2 x -0.231089 -0.009020 -0.024260 0.327185 O #2 y -0.009020 -0.058944 -0.002497 -0.091684 0.405143 O #2 z 0.024260 0.002497 -0.019195 -0.054134 0.232136 0.161872 H #1 x -0.063228 0.066659 -0.047123 -0.032867 0.034045 -0.017249 H #1 y 0.119935 -0.356156 0.226270 -0.019230 0.009957 -0.008363 H #1 z -0.074202 0.224938 -0.144262 0.004193 -0.004701 0.001585 H #2 x -0.032867 0.034045 0.017249 -0.063228 0.066659 0.047123 H #2 y -0.019230 0.009957 0.008363 0.119935 -0.356156 -0.226270 H #2 z -0.004193 0.004701 0.001585 0.074202 -0.224938 -0.144262 H #1 x H #1 y H #1 z H #2 x H #2 y H #2 z H #1 x 0.103043 H #1 y -0.101127 0.347184 H #1 z 0.067190 -0.219072 0.141655 H #2 x -0.006948 0.000423 0.002819 0.103043 H #2 y 0.000423 -0.000985 -0.001165 -0.101127 0.347184 H #2 z -0.002819 0.001165 0.001022 -0.067190 0.219072 0.141655 Total dipole moment ------------------- au Debye z 0.69571286 1.76834207 Conversion factor used: 1 Debye = 2.54177000 a.u. Total dipole moment derivatives ------------------------------- Symmetry 1 Ez O #1 x 0.03345019 O #1 y -0.25142670 O #1 z -0.58972464 H #2 x -0.00294197 H #2 y 0.18713878 H #2 z 0.58972464 Symmetry 2 Ex Ey O #1 x -0.48496241 0.02588968 O #1 y 0.04350612 -0.42159685 O #1 z -0.17985800 -0.27885321 H #2 x 0.48496241 -0.02588968 H #2 y -0.04350612 0.42159685 H #2 z 0.00438197 0.18837795 Ex Ey Ez O #11 x -0.242481 0.012945 0.016725 O #11 y 0.021753 -0.210798 -0.125713 O #11 z -0.089929 -0.139427 -0.294862 O #12 x -0.242481 0.012945 -0.016725 O #12 y 0.021753 -0.210798 0.125713 O #12 z 0.089929 0.139427 -0.294862 H #21 x 0.242481 -0.012945 -0.001471 H #21 y -0.021753 0.210798 0.093569 H #21 z 0.002191 0.094189 0.294862 H #22 x 0.242481 -0.012945 0.001471 H #22 y -0.021753 0.210798 -0.093569 H #22 z -0.002191 -0.094189 0.294862 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 7.99999237060547D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 1.9900 seconds. in runit xvdint 0 Used masses (in AMU) in vibrational analysis: 17.999160300 17.999160300 2.014101779 2.014101779 Normal Coordinate Analysis ---------------------------------------------------------------- Irreducible Harmonic Infrared Type Representation Frequency Intensity ---------------------------------------------------------------- (cm-1) (km/mol) ---------------------------------------------------------------- ---- 0.0153i 5.9256 ROTATION ---- 0.0057i 0.0000 ROTATION ---- 0.0000i 0.0000 TRANSLATION ---- 0.0000 0.0000 TRANSLATION ---- 0.0035 0.6059 TRANSLATION ---- 0.0254 41.0171 ROTATION A 255.0408 97.7815 VIBRATION A 867.9131 0.4515 VIBRATION B 972.3974 50.9737 VIBRATION A 1064.0233 0.0010 VIBRATION B 2759.9811 24.8586 VIBRATION A 2764.5608 5.5691 VIBRATION ---------------------------------------------------------------- Normal Coordinates A A B 255.04 867.91 972.40 VIBRATION VIBRATION VIBRATION X Y Z X Y Z X Y Z O 0.017 0.1447 0.1907 0.6957 0.1107 -0.0182 0.2113 0.0524 -0.1657 O -0.017-0.1447 0.1907 -0.6957 -0.1107 -0.0182 0.2113 0.0524 0.1657 H 0.047-0.3392 -0.5702 -0.0005 -0.0196 0.0545 -0.6317 -0.1567 0.0394 H -0.047 0.3392 -0.5702 0.0005 0.0196 0.0545 -0.6317 -0.1567 -0.0394 A B A 1064.02 2759.98 2764.56 VIBRATION VIBRATION VIBRATION X Y Z X Y Z X Y Z O 0.045-0.2400 0.0171 0.0610 -0.1817 0.1185 0.0748 -0.1862 0.1154 O -0.045 0.2400 0.0171 0.0610 -0.1817 -0.1185 -0.0748 0.1862 0.1154 H 0.655 0.0866 -0.0511 -0.1823 0.5432 -0.3477 -0.1752 0.5447 -0.3450 H -0.655-0.0866 -0.0511 -0.1823 0.5432 0.3477 0.1752 -0.5447 -0.3450 Gradient vector in normal coordinate representation ---------------------------------------------------------- i W(I) dE/dQ(i) dE/dq dE/dq [dE/dQ(i)]/w(i) (cm-1) (eV) (relative) ---------------------------------------------------------- 7 255.04 0.0000000000 0.000 0.000000 0.0000000000 8 867.91 0.0000000000 0.000 0.000000 0.0000000000 9 972.40 0.0000000000 0.000 0.000000 0.0000000000 10 1064.02 0.0000000000 0.000 0.000000 0.0000000000 11 2759.98 0.0000000000 0.000 0.000000 0.0000000000 12 2764.56 0.0000000000 0.000 0.000000 0.0000000000 ---------------------------------------------------------- Normal modes in internal coordinates --------------------------------------------------------------------------- 0.015 0.006 0.000 0.000 0.004 --------------------------------------------------------------------------- R1 0.000000 0.000000 0.000000 0.000000 0.000000 R2 0.000000 0.000000 0.000000 0.000000 0.000000 A 0.000000 0.000000 0.000000 0.000000 0.000000 R2 0.000000 0.000000 0.000000 0.000000 0.000000 A 0.000000 0.000000 0.000000 0.000000 0.000000 D 0.000000 0.000000 0.000000 0.000000 0.000000 --------------------------------------------------------------------------- 0.025 255.041 867.913 972.397 1064.023 --------------------------------------------------------------------------- R1 0.000000 0.030404 0.922843 0.000000 0.011928 R2 0.000000 -0.004401 0.020512 -0.017913 0.031773 A 0.000000 -0.044592 -0.264750 -0.706880 0.706342 R2 0.000000 -0.004401 0.020512 0.017913 0.031773 A 0.000000 -0.044592 -0.264750 0.706880 0.706342 D 0.000000 0.997527 -0.085646 0.000000 0.001348 --------------------------------------------------------------------------- 2759.981 2764.561 --------------------------------------------------------------------------- R1 0.000000 0.029874 R2 -0.706831 -0.705299 A 0.019743 0.045099 R2 0.706831 -0.705299 A -0.019743 0.045099 D 0.000000 -0.012092 --------------------------------------------------------------------------- ---------------------------------------------------------------- Dipole Moment Function (Normal Coordinate Basis) ---------------------------------------------------------------- Mode Symmetry d(Mu(x))/dQ d(Mu(y))/dQ d(Mu(z))/dQ ---------------------------------------------------------------- Q7 A 0.000000 0.000000 -0.316705 Q8 A 0.000000 0.000000 0.021521 Q9 B -0.227522 -0.022836 0.000000 Q10 A 0.000000 0.000000 0.001029 Q11 B -0.093868 0.129183 0.000000 Q12 A 0.000000 0.000000 -0.075582 ---------------------------------------------------------------- --------------------------------------------------------------------------- Quartic centrifugal distortion parameters CM-1 MHz --------------------------------------------------------------------------- 1 1 1 1 -0.4942884387E-03 -14.8183945993 1 1 1 2 0.6352182587E-04 1.9043364316 1 1 1 3 0.0000000000E+00 0.0000000000 1 1 2 1 0.6352182587E-04 1.9043364316 1 1 2 2 -0.1113627225E-04 -0.3338570432 1 1 2 3 0.0000000000E+00 0.0000000000 1 1 3 1 0.0000000000E+00 0.0000000000 1 1 3 2 0.0000000000E+00 0.0000000000 1 1 3 3 -0.4123883467E-05 -0.1236309161 1 2 1 1 0.6352182587E-04 1.9043364316 1 2 1 2 -0.2698232282E-04 -0.8089096879 1 2 1 3 0.0000000000E+00 0.0000000000 1 2 2 1 -0.2698232282E-04 -0.8089096879 1 2 2 2 0.3704879316E-05 0.1110694877 1 2 2 3 0.0000000000E+00 0.0000000000 1 2 3 1 0.0000000000E+00 0.0000000000 1 2 3 2 0.0000000000E+00 0.0000000000 1 2 3 3 0.7933141443E-06 0.0237829597 1 3 1 1 0.0000000000E+00 0.0000000000 1 3 1 2 0.0000000000E+00 0.0000000000 1 3 1 3 -0.1081523762E-04 -0.3242326669 1 3 2 1 0.0000000000E+00 0.0000000000 1 3 2 2 0.0000000000E+00 0.0000000000 1 3 2 3 -0.3119755674E-06 -0.0093527922 1 3 3 1 -0.1081523762E-04 -0.3242326669 1 3 3 2 -0.3119755674E-06 -0.0093527922 1 3 3 3 0.0000000000E+00 0.0000000000 2 1 1 1 0.6352182587E-04 1.9043364316 2 1 1 2 -0.2698232282E-04 -0.8089096879 2 1 1 3 0.0000000000E+00 0.0000000000 2 1 2 1 -0.2698232282E-04 -0.8089096879 2 1 2 2 0.3704879316E-05 0.1110694877 2 1 2 3 0.0000000000E+00 0.0000000000 2 1 3 1 0.0000000000E+00 0.0000000000 2 1 3 2 0.0000000000E+00 0.0000000000 2 1 3 3 0.7933141443E-06 0.0237829597 2 2 1 1 -0.1113627225E-04 -0.3338570432 2 2 1 2 0.3704879316E-05 0.1110694877 2 2 1 3 0.0000000000E+00 0.0000000000 2 2 2 1 0.3704879316E-05 0.1110694877 2 2 2 2 -0.8445158157E-05 -0.2531794722 2 2 2 3 0.0000000000E+00 0.0000000000 2 2 3 1 0.0000000000E+00 0.0000000000 2 2 3 2 0.0000000000E+00 0.0000000000 2 2 3 3 -0.4364667325E-05 -0.1308494346 2 3 1 1 0.0000000000E+00 0.0000000000 2 3 1 2 0.0000000000E+00 0.0000000000 2 3 1 3 -0.3119755674E-06 -0.0093527922 2 3 2 1 0.0000000000E+00 0.0000000000 2 3 2 2 0.0000000000E+00 0.0000000000 2 3 2 3 -0.2952139805E-07 -0.0008850292 2 3 3 1 -0.3119755674E-06 -0.0093527922 2 3 3 2 -0.2952139805E-07 -0.0008850292 2 3 3 3 0.0000000000E+00 0.0000000000 3 1 1 1 0.0000000000E+00 0.0000000000 3 1 1 2 0.0000000000E+00 0.0000000000 3 1 1 3 -0.1081523762E-04 -0.3242326669 3 1 2 1 0.0000000000E+00 0.0000000000 3 1 2 2 0.0000000000E+00 0.0000000000 3 1 2 3 -0.3119755674E-06 -0.0093527922 3 1 3 1 -0.1081523762E-04 -0.3242326669 3 1 3 2 -0.3119755674E-06 -0.0093527922 3 1 3 3 0.0000000000E+00 0.0000000000 3 2 1 1 0.0000000000E+00 0.0000000000 3 2 1 2 0.0000000000E+00 0.0000000000 3 2 1 3 -0.3119755674E-06 -0.0093527922 3 2 2 1 0.0000000000E+00 0.0000000000 3 2 2 2 0.0000000000E+00 0.0000000000 3 2 2 3 -0.2952139805E-07 -0.0008850292 3 2 3 1 -0.3119755674E-06 -0.0093527922 3 2 3 2 -0.2952139805E-07 -0.0008850292 3 2 3 3 0.0000000000E+00 0.0000000000 3 3 1 1 -0.4123883467E-05 -0.1236309161 3 3 1 2 0.7933141443E-06 0.0237829597 3 3 1 3 0.0000000000E+00 0.0000000000 3 3 2 1 0.7933141443E-06 0.0237829597 3 3 2 2 -0.4364667325E-05 -0.1308494346 3 3 2 3 0.0000000000E+00 0.0000000000 3 3 3 1 0.0000000000E+00 0.0000000000 3 3 3 2 0.0000000000E+00 0.0000000000 3 3 3 3 -0.8930200727E-05 -0.2677206826 --------------------------------------------------------------------------- ------------------------------------------------------------ Parameter (MHz) (CM-1) ------------------------------------------------------------ R6 -.399471E-02 -.133249E-06 R5 -.741782E-01 -.247432E-05 SI 0.242181E+03 A-reduced centrifugal distortion parameters DJ 0.571231E-01 0.190542E-05 DK 0.308078E+01 0.102764E-03 DJK 0.566697E+00 0.189030E-04 DELJ 0.651125E-01 0.217192E-05 DELK 0.312073E+01 0.104096E-03 DELJK 0.518760E+00 0.000000E+00 delJ -.908826E-03 0.000000E+00 delK 0.401813E+01 0.000000E+00 S-reduced centrifugal distortion parameters DJ 0.568168E-01 0.189520E-05 DK 0.307925E+01 0.102713E-03 DJK 0.568535E+00 0.189643E-04 D1 0.908826E-03 0.303152E-07 D2 -.414785E-02 -.138357E-06 ------------------------------------------------------------ Centrifugal corrections for various types of rotational constants (MHz) ... Bx''-Bx 0.6322171520 By''-By 0.5477709834 Bz''-Bz 0.5317147917 Bx''-Bx' 0.0663097465 By''-By' 0.3860481250 Bz''-Bz' 0.9758382095 Bx'-Bx 0.5659074055 By'-By 0.1617228584 Bz'-Bz -0.4441234179 BxSR-Bx 0.5434706304 BySR-By -0.1196235959 BzSR-Bz -0.1320444850 BxSR-Bx'' -0.0887465217 BySR-By'' -0.6673945793 BzSR-Bz'' -0.6637592767 BxSR-Bx' 0.0224367751 BySR-By' -0.2813464543 BzSR-Bz' 0.3120789328 Vibrational frequencies after rotational projection of Cartesian force constants: 1 0.0000i 2 0.0000i 3 0.0000 4 0.0000 5 0.0000 6 0.0000 7 255.0408 8 867.9131 9 972.3974 10 1064.0233 11 2759.9811 12 2764.5608 Zero-point vibrational energy: 12.4143 kcal/mol 0.0000 kJ/mol. in runit xjoda 0