in shell rm -f FILES 0 ************************************************************************* AAAAA CCCCCC EEEEEEEE SSSSSS 2222222222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCC EEE SSS 222 222 AAAAAAAAA CCC EEEEEE SSSS 222 222 AAA AAA CCC EEE SSS 222 222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCCCCC EEEEEEEE SSSSSS 2222222222 ************************************************************************* ******************************************************* * ACES2: Advanced Concepts in Electronic Structure II * ******************************************************* Department of Chemistry Institut fuer Physikalische Chemie University of Texas at Austin Universitaet Mainz Austin, TX 48792, USA D-55099 Mainz, Germany Mainz-Austin-Budapest-Version 2005 ------------------------------------------------------------------- input from ZMAT file ------------------------------------------------------------------- CCSD(T)/AUG-PVTZ STATIC POLARIZIBILITY OF HYDROGEN FLUORIDE WITH FROZEN CORE F H 1 R R=0.9169 *ACES2(CALC=CCSD(T),BASIS=AUG-PVTZ,PROP=SECOND_ORDER SCF_CONV=10,CC_CONV=10,LINEQ_CONV=10,FROZEN_CORE=ON MEMORY=10000000) ------------------------------------------------------------------- ACES2 Control Parameters ------------------------------------------------------------------- External Internal Value Units Name Name ------------------------------------------------------------------- PRINT IPRNT 0 *** CALCLEVEL ICLLVL CCSD(T) [ 22] *** DERIV_LEV IDRLVL SECOND [ 2] *** CC_CONV ICCCNV 10D- 10 *** SCF_CONV ISCFCV 10D- 10 *** XFORM_TOL IXFTOL 10D- 11 *** CC_MAXCYC ICCCYC 50 cycles LINDEP_TOL ILINDP 8 *** RDO IRDOFM ON [ 1] *** SCF_EXTRAPO IRPP ON [ 1] *** REFERENCE IREFNC RHF [ 0] *** CC_EXPORDER ICCEOR 5 *** TAMP_SUM IEVERY 5 *** NTOP_TAMP ITOPT2 15 *** CCORBOPT ICCORB OFF [ 0] x 0.01 SCF_MAXCYC ISCFCY 150 cycles OCCUPATION IOCCU ESTIMATED BY SCF PROPS IPROPS STAT_POL [ 2] *** RELAX_DENS IRDENS ON [ 1] *** SCF_EXPORDE IRPPOR 6 *** CC_EXTRAPOL ICCEXT DIIS [ 1] *** BRUECKNER IBRKNR OFF [ 0] *** XFIELD IXEFLD 0 x 10-6 YFIELD IYEFLD 0 x 10-6 ZFIELD IZEFLD 0 x 10-6 SAVE_INTS ISVINT OFF [ 0] *** DROPMO IDRPMO NONE CHARGE ICHRGE 0 *** MULTIPLICTY IMULTP 1 *** CPHF_CONVER ICPHFT 10D- 12 *** CPHF_MAXCYC ICPHFC 64 cycles INCORE INCORE OFF [ 0] *** MEMORY_SIZE IMEMSZ 10000000 words FILE_RECSIZ IFLREC 4096 words NON-HF INONHF OFF [ 0] *** ORBITALS IORBTP STANDARD [ 0] *** SCF_EXPSTAR IRPPLS 8 *** LOCK_ORBOCC ILOCOC OFF [ 0] *** HBAR IHBAR OFF [ 0] *** CACHE_RECS ICHREC 10 *** GUESS IGUESS MOREAD [ 0] *** JODA_PRINT IJPRNT 0 *** GEO_METHOD INR SINGLE_POINT [ 5] *** GEO_CONV ICONTL 5 H/bohr EIGENVECTOR IVEC 1 *** NEGEVAL IDIE ABORT [ 0] *** CURVILINEAR ICURVY OFF [ 0] *** SCALE_ON ISTCRT 0 *** GEO_MAXSTEP IMXSTP 300 millibohr VIBRATION IVIB NO [ 0] *** EVAL_HESS IRECAL 0 # of cyc. INTEGRALS INTTYP VMOL [ 1] *** FD_STEPSIZE IDISFD 0 10-4 bohr POINTS IGRDFD 0 *** CONTRACTION ICNTYP GENERAL [ 1] *** SYMMETRY ISYM ON [ 0] *** BASIS IBASIS AUG-PVTZ [ 34] *** SPHERICAL IDFGHI ON [ 1] *** RESET_FLAGS IRESET OFF [ 0] *** PERT_ORB IPTORB CANONICAL [ 1] *** GENBAS_1 IGNBS1 0 *** GENBAS_2 IGNBS2 0 *** GENBAS_3 IGNBS3 0 *** COORDINATES ICOORD INTERNAL [ 0] *** SYM_CHECK ISYMCK OVERRIDE [ 1] *** SCF_PRINT ISCFPR 0 *** ECP IECP OFF [ 0] *** RESTART_CC ICCRES OFF [ 0] *** TRANS_INV ITRAIN USE [ 0] *** HFSTABILITY ISTABL OFF [ 0] *** ROT_EVEC ROTVEC 0 *** BRUCK_CONV IBRTOL 10D- 4 *** UNITS IUNITS ANGSTROM [ 0] *** FD_USEGROUP IFDGRP FULL [ 0] *** FD_PROJECT IFDPRJ ON [ 0] *** FD_CALTYPE IFDCAL GRADONLY [ 0] *** VTRAN IVTRAN FULL/PARTIAL [ 0] *** HF2_FILE IHF2Fl USE [ 1] *** SUBGROUP ISUBGP DEFAULT [ 0] *** SUBGRPAXIS ISBXYZ X [ 0] *** EXCITE IEXCIT NONE [ 0] *** LINEQ_CONV IZTACN 10D- 10 cycles TREAT_PERT ITREAT SIMULTANEOUS [ 0] *** ESTATE_PROP IEXPRP OFF [ 0] *** GEO_MAXCYC IOPTCY 50 *** ABCDTYPE IABCDT STANDARD [ 0] *** AO_LADDERS IAOLAD SINGLEPASS [ 1] *** FOCK IFOCK AO [ 1] *** ESTATE_MAXC IEXMXC 20 *** ESTATE_CONV IEXTOL 10D- 5 *** DIRECT IDIRCT OFF [ 0] *** GAMMA_ABCD IGABCD STORE [ 0] *** LINEQ_TYPE ILTYPE DIIS [ 1] *** LINEQ_MAXCY ILMAXC 50 *** RESRAMAN IRESRM OFF [ 0] *** PSI IPSI OFF [ 0] *** GAMMA_ABCI IGABCI STORE [ 0] *** ESTATE_DIAG IEXDIG ITERATIVE [ 0] *** FC_FIELD IFINFC 0 x 10-6 SD_FIELD IFINSD 0 x 10-6 DIFF_TYPE IDIFTY RELAXED [ 0] *** LINEQ_EXPOR ILMAXD 5 *** FINITE_PERT IFIPER 0 x 10-6 ANHARMONIC IANHAR OFF [ 0] *** CC_PROGRAM ICCPRO VCC [ 0] *** OPEN-SHELL IOPEN SPIN-ORBITAL [ 0] *** UIJ_THRESHO IUIJTH 25 *** SCF_DAMPING IDAMP 0 x 10-3 PROP_INTEGR IINTYP INTERNAL [ 0] *** ANH_SYMMETR IANHSM ABELIAN [ 0] *** ANH_ALGORIT IANALG STANDARD [ 0] *** EOM_NONIT EOMNON OFF [ 0] *** GEO_ALGORIT IGEALG STANDARD [ 0] *** ANH_DERIVAT IANDER SECOND [ 1] *** SPINROTATIO ISRCON OFF [ 0] *** CIS_CONV ICISTL 5 *** ANH_STEPSIZ ICUBST 50000 x 10-6 SPIN_FLIP ISPFLP OFF [ 0] *** GRID IGRID OFF [ 0] *** DBOC IDBOC OFF [ 0] *** EOMFOLLOW IEOMSR ENERGY [ 0] *** T3_EXTRAPOL IT3EXT OFF [ 0] *** ESTATE_LOCK IESLOC OFF [ 0] *** UNOS IUNOS OFF [ 0] *** FREQ_ALGORI IVIALG STANDARD [ 0] *** RELATIVIST IRELAT OFF [ 0] *** FROZEN_CORE IFROCO ON [ 1] *** EXCITATION IEXCIT 0 *** MRCC_INPUT IMRCC ON [ 1] *** GIAO IGIAO OFF [ 1] *** EOM_NSING IEOMSI 10D- 0 *** EOM_NTRIP IEOMTR 10D- 0 *** EOM_NSTATES IMRCCD DAVIDSON [ 0] *** MRCC_DIAG IEOMST 10D- 0 *** NEWNORM INEWNO OFF [ 0] *** TESTSUITE ITESTS OFF [ 0] *** BUFFERSIZE IBUFFS 600 *** SPINORBIT ISOCAL OFF [ 0] *** DCT IDCT OFF [ 0] *** PARALLEL IPARAL ON [ 1] *** PARA_PRINT IPPRIN 0 *** COMM_SIZE IPSIZE *** *** PARA_INT IPINTS ON [ 1] *** RAMAN_INT IRAMIN OFF [ 0] *** RAMAN_ORB IRAMRE UNRELAXED [ 0] *** ------------------------------------------------------------------- 2 entries found in Z-matrix Job Title : CCSD(T)/AUG-PVTZ STATIC POLARIZIBILITY OF HYDROGEN FLUORIDE WITH FROZEN CORE There are 1 unique internal coordinates. Of these, 0 will be optimized. User supplied Z-matrix: -------------------------------------------------------------------------------- SYMBOL BOND LENGTH ANGLE ANGLE DIHED ANGLE TO (ANGST) WRT (DEG) WRT (DEG) -------------------------------------------------------------------------------- F H 1 R *Initial values for internal coordinates* Name Value R 0.916900 -------------------------------------------------------------------------------- 1 F 9 18.99840 2 H 1 1.00783 Rotational constants (in cm-1): 20.9515224204 20.9515224204 Rotational constants (in MHz): 628110.9285208166 628110.9285208166 ******************************************************************************** The full molecular point group is CXv . The largest Abelian subgroup of the full molecular point group is C2v . The computational point group is C2v . ******************************************************************************** -------------------------------------------------------------------------------- Analysis of internal coordinates specified by Z-matrix -------------------------------------------------------------------------------- *The nuclear repulsion energy is 5.19423 a.u. *There is 1 degree of freedom within the tot. symm. molecular subspace. *Z-matrix requests optimization of 0 coordinates. *The optimization is constrained. *The following 1 parameters can have non-zero derivatives within the totally symmetric subspace: R [ 1] *The following 0 parameters are to be optimized: *The following coordinates must be varied in an unconstrained optimization. R [ 1] -------------------------------------------------------------------------------- ---------------------------------------------------------------- Z-matrix Atomic Coordinates (in bohr) Symbol Number X Y Z ---------------------------------------------------------------- F 9 0.00000000 0.00000000 0.08728525 H 1 0.00000000 0.00000000 -1.64540500 ---------------------------------------------------------------- Interatomic distance matrix (Angstroms) F H [ 1] [ 2] F [ 1] 0.00000 H [ 2] 0.91690 0.00000 Rotational constants (in cm-1): 20.9515224204 0.0000000000 Rotational constants (in MHz): 628110.9285208166 0.0000000000 There are 69 basis functions. in runit xjoda 0 54 0 Serial version of molecule started ------------------------------------------------------------------- input from MOL file ------------------------------------------------------------------- INTGRL 1 0 1 0 0 0 0 0 0 *** ACES2 Program System (Release V0.1) *** CCSD(T)/AUG-PVTZ STATIC POLARIZIBILITY OF HYDROGEN FLUORIDE WITH FROZEN CORE 2 2 X Y 0.10E-08 0 0 9999.00 3.00 9.00000000 1 4 1 1 1 1 F #1 0.000000000000 0.000000000000 0.087285248692 11 5 19500.0000000000 0.0005070000 -0.0001170000 0.000000000 0.0000000000 0.0000000000 2923.0000000000 0.0039230000 -0.0009120000 0.000000000 0.0000000000 0.0000000000 664.5000000000 0.0202000000 -0.0047170000 0.000000000 0.0000000000 0.0000000000 187.5000000000 0.0790100000 -0.0190860000 0.000000000 0.0000000000 0.0000000000 60.6200000000 0.2304390000 -0.0596550000 0.000000000 0.0000000000 0.0000000000 21.4200000000 0.4328720000 -0.1400100000 0.000000000 0.0000000000 0.0000000000 7.9500000000 0.3499640000 -0.1767820000 0.000000000 0.0000000000 0.0000000000 2.2570000000 0.0432330000 0.1716250000 1.000000000 0.0000000000 0.0000000000 0.8815000000 -0.0078920000 0.6050430000 0.000000000 0.0000000000 0.0000000000 0.3041000000 0.0023840000 0.3695120000 0.000000000 1.0000000000 0.0000000000 0.0915800000 0.0000000000 0.0000000000 0.000000000 0.0000000000 1.0000000000 6 4 43.8800000000 0.0166650000 0.0000000000 0.000000000 0.0000000000 9.9260000000 0.1044720000 0.0000000000 0.000000000 0.0000000000 2.9300000000 0.3172600000 0.0000000000 0.000000000 0.0000000000 0.9132000000 0.4873430000 1.0000000000 0.000000000 0.0000000000 0.2672000000 0.3346040000 0.0000000000 1.000000000 0.0000000000 0.0736100000 0.0000000000 0.0000000000 0.000000000 1.0000000000 3 3 3.1070000000 1.0000000000 0.0000000000 0.000000000 0.8550000000 0.0000000000 1.0000000000 0.000000000 0.2920000000 0.0000000000 0.0000000000 1.000000000 2 2 1.9170000000 1.0000000000 0.0000000000 0.7240000000 0.0000000000 1.0000000000 1.00000000 1 3 1 1 1 H #2 0.000000000000 0.000000000000 -1.645404998108 6 4 33.8700000000 0.0060680000 0.0000000000 0.000000000 0.0000000000 5.0950000000 0.0453080000 0.0000000000 0.000000000 0.0000000000 1.1590000000 0.2028220000 0.0000000000 0.000000000 0.0000000000 0.3258000000 0.5039030000 1.0000000000 0.000000000 0.0000000000 0.1027000000 0.3834210000 0.0000000000 1.000000000 0.0000000000 0.0252600000 0.0000000000 0.0000000000 0.000000000 1.0000000000 3 3 1.4070000000 1.0000000000 0.0000000000 0.000000000 0.3880000000 0.0000000000 1.0000000000 0.000000000 0.1020000000 0.0000000000 0.0000000000 1.000000000 2 2 1.0570000000 1.0000000000 0.0000000000 0.2470000000 0.0000000000 1.0000000000 FINISH ------------------------------------------------------------------- One- and two-electron integrals over symmetry-adapted AOs are calculated. Spherical harmonics are used. Integrals less than 0.10E-13 are neglected. Nuclear repulsion energy : 5.1942348130 a.u. required memory for a1 array 4180096 words required memory for a2 array 2643608 words GETMEM: Allocated 33 MB of memory in. @MOLECU-I, One electron integrals required 0.10000 seconds. @TWOEL-I, 70033 integrals of symmetry type I I I I @TWOEL-I, 232387 integrals of symmetry type I J I J @TWOEL-I, 129239 integrals of symmetry type I I J J @TWOEL-I, 132978 integrals of symmetry type I J K L @TWOEL-I, Total number of 2-e integrals 564637. @MOLECU-I, Two electron integrals required 2.05000 seconds. @CHECKOUT-I, Total execution time : 2.2000 seconds. in runit xvmol 0 GETMEM: Allocated 38 MB of memory in. @CHECKOUT-I, Total execution time : 0.0100 seconds. in runit xvmol2ja 0 GETMEM: Allocated 38 MB of memory in. Property integrals will be calculated. -------------------------------------------------------------- Property evaluated at Property type X Y Z -------------------------------------------------------------- Dipole moment ---- ---- ---- Quadrupole moment ---- ---- ---- Octopole moment ---- ---- ---- Relativisitic corr. ---- ---- ---- Second moment 0.0000000 0.0000000 0.0000000 Electron density 0.0000000 0.0000000 0.0872852 Electron density 0.0000000 0.0000000 -1.6454050 Field gradient 0.0000000 0.0000000 0.0872852 Field gradient 0.0000000 0.0000000 -1.6454050 Potential 0.0000000 0.0000000 0.0872852 Potential 0.0000000 0.0000000 -1.6454050 -------------------------------------------------------------- @CHECKOUT-I, Total execution time : 0.3300 seconds. in runit xvprop 0 scf called There are 69 functions in the AO basis. There are 4 irreducible representations. Irrep # of functions 1 30 2 16 3 16 4 7 Parameters for SCF calculation: SCF reference function: RHF Maximum number of iterations: 150 Full symmetry point group: CXv Computational point group: C2v Initial density matrix: MOREAD SCF convergence tolerance: 10**(-10) DIIS convergence acceleration: ON Latest start for DIIS: 8 DIIS order: 6 Memory information: 332633 words required. Fock matrices are constructed from AO integral file. GETMEM: Allocated 1 MB of memory in. Initialization and symmetry analysis required 0.000 seconds. norm,i 1 1.00000000000000 norm,i 2 1.00000000000000 norm,i 3 1.00000000000000 norm,i 4 1.00000000000000 norm,i 5 1.00000000000000 norm,i 6 1.00000000000000 norm,i 7 1.00000000000000 norm,i 8 1.00000000000000 norm,i 9 1.00000000000000 norm,i 10 12.0000000000000 norm,i 11 12.0000000000000 norm,i 12 12.0000000000000 norm,i 13 4.00000000000000 norm,i 14 4.00000000000000 norm,i 15 4.00000000000000 norm,i 16 60.0000000000000 norm,i 17 60.0000000000000 norm,i 18 4.00000000000000 norm,i 19 4.00000000000000 norm,i 20 1.00000000000000 norm,i 21 1.00000000000000 norm,i 22 1.00000000000000 norm,i 23 1.00000000000000 norm,i 24 1.00000000000000 norm,i 25 1.00000000000000 norm,i 26 1.00000000000000 norm,i 27 12.0000000000000 norm,i 28 12.0000000000000 norm,i 29 4.00000000000000 norm,i 30 4.00000000000000 norm,i 31 -2.22044604925031D-016 norm,i 32 8.88178419700125D-016 norm,i 33 -1.05248150063613D-002 norm,i 34 0.00000000000000D+000 norm,i 35 0.00000000000000D+000 norm,i 36 14.3615046999713 norm,i 37 2.22044604925031D-016 norm,i 38 0.131793227017432 norm,i 39 0.218732079149624 norm,i 40 -9.53717092148421D-002 norm,i 41 1.05012259822153 norm,i 42 0.00000000000000D+000 norm,i 43 0.617296355593859 norm,i 44 2.22044604925031D-016 norm,i 45 0.00000000000000D+000 norm,i 46 23.9358411666188 norm,i 47 -0.349862592620847 norm,i 48 0.00000000000000D+000 norm,i 49 0.212825377366155 norm,i 50 -0.277521560549918 norm,i 51 1.00000000000000 norm,i 52 1.53420295722461D-311 norm,i 53 9.73996068266496D-312 norm,i 54 1.35595531074202D-311 norm,i 55 4.96547015200991D-312 norm,i 56 1.18831764321674D-311 norm,i 57 1.49812902876980D-311 norm,i 58 0.00000000000000D+000 norm,i 59 0.00000000000000D+000 norm,i 60 0.00000000000000D+000 norm,i 61 0.00000000000000D+000 norm,i 62 0.00000000000000D+000 norm,i 63 0.00000000000000D+000 norm,i 64 0.00000000000000D+000 norm,i 65 0.00000000000000D+000 norm,i 66 0.00000000000000D+000 norm,i 67 0.00000000000000D+000 norm,i 68 0.00000000000000D+000 norm,i 69 0.00000000000000D+000 @INITGES-I, Occupancies from core Hamiltonian: Alpha population by irrep: 3 1 1 0 Beta population by irrep: 3 1 1 0 -------------------------------------------------------------------- Iteration Total Energy Largest Density Difference -------------------------------------------------------------------- 0 5.1942348130 0.0000000000D+00 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 1 -85.2827358761 0.1118195325D+02 largest error matrix element: -0.5337777872D+01 norm of error vector: 0.1771539084D+02 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 2 -85.3123642141 0.8645708835D+02 largest error matrix element: -0.2148775725D+01 norm of error vector: 0.6992890558D+01 current occupation vector 4 1 0 0 4 1 0 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 3 -94.9775720516 0.8646392596D+02 largest error matrix element: 0.3047279924D+01 norm of error vector: 0.9842175514D+01 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 4 -90.2429513166 0.2217058701D+02 largest error matrix element: 0.1217631219D+01 norm of error vector: 0.6489267751D+01 current occupation vector 4 1 0 0 4 1 0 0 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 -5.74429392941056D-013 2.24021291024576D-012 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 6.77236045021346D-015 -1.81451671940199D-013 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -7.14983627858601D-014 -1.64469948451537D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 0.00000000000000D+000 -8.53657274297421D-017 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 -6.79456491070596D-014 1.59715884132204D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 4.44089209850063D-016 -4.64631788515407D-016 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 -8.88178419700125D-016 3.38113526047693D-015 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 6.66133814775094D-016 -4.22555111084351D-016 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 5 -96.2598086444 0.2217317063D+02 largest error matrix element: -0.2522574605D+01 norm of error vector: 0.8426976038D+01 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 6 -92.1550745617 0.8380261247D+01 largest error matrix element: 0.1319639070D+01 norm of error vector: 0.6405730886D+01 current occupation vector 4 1 0 0 4 1 0 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 7 -96.8407986054 0.8387688858D+01 largest error matrix element: 0.2277963401D+01 norm of error vector: 0.7745630991D+01 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 8 -93.2851959001 0.4939070410D+01 largest error matrix element: 0.1419199232D+01 norm of error vector: 0.6231653356D+01 current occupation vector 4 1 0 0 4 1 0 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 9 -99.9113600917 0.4954468972D+01 largest error matrix element: -0.3175500551D+00 norm of error vector: 0.1421737738D+01 current occupation vector 3 1 1 0 3 1 1 0 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 -5.94635451989234D-013 -1.93750588459291D-012 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 1.27675647831893D-014 4.04617621060378D-013 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -7.09432512735475D-014 6.76109455684349D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -1.11022302462516D-016 2.12202482617207D-015 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 -7.01660951563099D-014 8.93761558392069D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 1.11022302462516D-015 2.00780798866867D-016 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 -1.11022302462516D-016 3.75092658823806D-018 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 0.00000000000000D+000 -1.44753695521024D-017 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 10 -100.0600462444 0.4336200358D+00 largest error matrix element: 0.2043364233D-01 norm of error vector: 0.8055425365D-01 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 11 -100.0609873934 0.3576586353D-01 largest error matrix element: 0.5872971668D-02 norm of error vector: 0.1964845280D-01 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 12 -100.0610653881 0.1396396021D-01 largest error matrix element: -0.1270794906D-02 norm of error vector: 0.5321768349D-02 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 13 -100.0610731568 0.4476535247D-02 largest error matrix element: 0.2600355199D-03 norm of error vector: 0.1136297857D-02 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 14 -100.0610733898 0.8270590301D-03 largest error matrix element: -0.3648114123D-04 norm of error vector: 0.1521344493D-03 current occupation vector 3 1 1 0 3 1 1 0 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 -5.85975712397158D-013 -2.07434377894149D-012 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 -3.03090885722668D-014 1.68901120623971D-013 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -7.32747196252603D-014 7.12191663637943D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -8.88178419700125D-016 1.61927495378635D-015 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 -7.21644966006352D-014 6.01285906559385D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 0.00000000000000D+000 -1.73884369849122D-016 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 9.99200722162641D-016 3.43142602523153D-015 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 -3.33066907387547D-016 -4.78439678113895D-016 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 15 -100.0610733928 0.6274704436D-04 largest error matrix element: 0.4466516467D-05 norm of error vector: 0.1809155444D-04 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 16 -100.0610733929 0.1419086772D-04 largest error matrix element: -0.1682826658D-05 norm of error vector: 0.4452797062D-05 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 17 -100.0610733929 0.4091422154D-05 largest error matrix element: 0.1507486479D-06 norm of error vector: 0.5424442553D-06 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 18 -100.0610733929 0.4115905698D-06 largest error matrix element: -0.1117096411D-07 norm of error vector: 0.6707813718D-07 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 19 -100.0610733929 0.3740268983D-07 largest error matrix element: -0.1502845978D-08 norm of error vector: 0.1086723190D-07 current occupation vector 3 1 1 0 3 1 1 0 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 -6.20170581555612D-013 -2.06547715946533D-012 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 1 8.52651282912120D-014 2.31426932533952D-013 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -7.12763181809351D-014 7.34062513170095D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 2 -1.11022302462516D-016 1.80476672006358D-016 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 -7.52731210695856D-014 5.88787304513984D-014 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 3 6.66133814775094D-016 -3.26890447346740D-016 sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 5.55111512312578D-016 1.39984169462065D-015 reorthoganalization of MOs is carried out sum over diagonal and offdiagdiagonal of C(T)*S*C for irrep 4 -7.77156117237610D-016 -3.62418187196685D-016 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 20 -100.0610733929 0.4923294383D-08 largest error matrix element: -0.6514962484D-09 norm of error vector: 0.1939818934D-08 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 21 -100.0610733929 0.2073529737D-08 largest error matrix element: -0.1124273537D-09 norm of error vector: 0.4953922634D-09 current occupation vector 3 1 1 0 3 1 1 0 processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. 22 -100.0610733929 0.3726694509D-09 largest error matrix element: 0.8689640247D-11 norm of error vector: 0.3912908274D-10 current occupation vector 3 1 1 0 3 1 1 0 SCF has converged. processed 70033 ao basis integrals from 117 buffers. processed 129239 ao basis integrals from 216 buffers. processed 232387 ao basis integrals from 388 buffers. E(SCF)= -100.0610733929 0.3669292648D-10 Eigenvector printing suppressed. @PUTMOS-I, Writing converged MOs to NEWMOS. @PUTMOS-I, Symmetry 1 Full 7 Partial 2 @PUTMOS-I, Symmetry 2 Full 4 Partial 0 @PUTMOS-I, Symmetry 3 Full 4 Partial 0 @PUTMOS-I, Symmetry 4 Full 1 Partial 3 @PRJDEN-I, Analyzing reference function density. Trace of projected alpha density matrix = 1.000000000 Alpha part of wavefunction is symmetric. ORBITAL EIGENVALUES (ALPHA) (1H = 27.2116080 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -26.2994260161 -715.6496713741 SG+ A1 (1) 2 2 -1.6028572035 -43.6163219007 SG+ A1 (1) 3 3 -0.7687384172 -20.9186084637 SG+ A1 (1) 4 31 -0.6505534879 -17.7026064966 PI B1 (2) 5 47 -0.6505534879 -17.7026064966 PI B2 (3) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 6 4 0.0305572421 0.8315116939 SG+ A1 (1) 7 5 0.1388530967 3.7784160362 SG+ A1 (1) 8 32 0.2012215135 5.4755609461 PI B1 (2) 9 48 0.2012215135 5.4755609461 PI B2 (3) 10 6 0.2081702621 5.6646475690 SG+ A1 (1) 11 33 0.2855690782 7.7707938135 PI B1 (2) 12 49 0.2855690782 7.7707938135 PI B2 (3) 13 7 0.3105742395 8.4512244608 SG+ A1 (1) 14 8 0.4276250936 11.6363664189 SG+ A1 (1) 15 9 0.7112782101 19.3550238334 SG+ A1 (1) 16 10 0.7599265296 20.6788228319 DE A1 (1) 17 63 0.7599265296 20.6788228319 DE A2 (4) 18 34 0.8262105777 22.4825183659 PI B1 (2) 19 50 0.8262105777 22.4825183659 PI B2 (3) 20 11 0.9493997745 25.8346944992 SG+ A1 (1) 21 35 1.0424460197 28.3666324505 PI B1 (2) 22 51 1.0424460197 28.3666324505 PI B2 (3) 23 12 1.0687164913 29.0814942234 SG+ A1 (1) 24 64 1.0858746777 29.5483960669 DE A2 (4) 25 13 1.0858746777 29.5483960669 DE A1 (1) 26 36 1.1455189185 31.1714117676 PI B1 (2) 27 52 1.1455189185 31.1714117676 PI B2 (3) 28 14 1.1487749103 31.2600125399 SG+ A1 (1) 29 37 1.6681272873 45.3924258367 PI B1 (2) 30 53 1.6681272873 45.3924258367 PI B2 (3) 31 15 1.9866488383 54.0599094228 SG+ A1 (1) 32 16 2.3920848503 65.0924752491 SG+ A1 (1) 33 17 2.7251094339 74.1546096724 SG+ A1 (1) 34 18 2.8078504744 76.4061264310 DE A1 (1) 35 65 2.8078504744 76.4061264310 DE A2 (4) 36 38 2.9051468651 79.0537176753 PI B1 (2) 37 54 2.9051468651 79.0537176753 PI B2 (3) 38 39 2.9341513340 79.8429759143 PH B1 (2) 39 55 2.9341513340 79.8429759143 PH B2 (3) 40 19 3.1599703497 85.9878744465 DE A1 (1) 41 66 3.1599703497 85.9878744465 DE A2 (4) 42 20 3.1629490325 86.0689291972 SG+ A1 (1) 43 40 3.6252247803 98.6481956332 PI B1 (2) 44 56 3.6252247803 98.6481956332 PI B2 (3) 45 21 4.0929419797 111.3755327174 SG+ A1 (1) 46 67 4.1664411986 113.3755646517 DE A2 (4) 47 22 4.1664411986 113.3755646517 DE A1 (1) 48 41 4.3036066933 117.1080583232 PI B1 (2) 49 57 4.3036066933 117.1080583232 PI B2 (3) 50 42 4.7688268268 129.7674462296 PI B1 (2) 51 58 4.7688268268 129.7674462296 PI B2 (3) 52 23 5.0727994312 138.0390295856 SG+ A1 (1) 53 24 5.6598596487 154.0138820947 SG+ A1 (1) 54 43 6.0815790099 165.4895440395 PI B1 (2) 55 59 6.0815790099 165.4895440395 PI B2 (3) 56 25 7.5391220268 205.1516332567 SG+ A1 (1) 57 60 8.8294412761 240.2632948639 PH B2 (3) 58 44 8.8294412761 240.2632948639 PH B1 (2) 59 26 8.9187472989 242.6934553486 DE A1 (1) 60 68 8.9187472989 242.6934553486 DE A2 (4) 61 61 9.2394168208 251.4193886751 PI B2 (3) 62 45 9.2394168208 251.4193886751 PI B1 (2) 63 27 9.3429450953 254.2365594996 SG+ A1 (1) 64 28 9.3591133625 254.6765240485 DE A1 (1) 65 69 9.3591133625 254.6765240485 DE A2 (4) 66 62 9.5487307102 259.8363169823 PI B2 (3) 67 46 9.5487307102 259.8363169823 PI B1 (2) 68 29 9.8854377809 268.9986578016 SG+ A1 (1) 69 30 14.6387443716 398.3437734511 SG+ A1 (1) VSCF finished. @CHECKOUT-I, Total execution time : 0.5400 seconds. in runit xvscf 0 scf called here for findif GETMEM: Allocated 38 MB of memory in. Full RHF integral transformation Frozen-core orbitals requested within analytic derivative calculation Transformation of IIII integrals : 1 pass through the AO integral file was required. 70033 AO integrals were read. 127026 MO integrals were written to HF2. Transformation of IIJJ integrals : 1 pass through the AO integral file was required. 129239 AO integrals were read. 165126 MO integrals were written to HF2. Transformation of IJIJ integrals : 1 pass through the AO integral file was required. 232387 AO integrals were read. 297184 MO integrals were written to HF2. Transformation of IJKL integrals : 1 pass through the AO integral file was required. 132978 AO integrals were read. 160724 MO integrals were written to HF2. Summary of active molecular orbitals: ------------------------------------------------------------------------ Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -26.2994260 1 36 1.0424460 2 2 -1.6028572 1 37 1.1455189 2 3 -0.7687384 1 38 1.6681273 2 4 -0.6505535 2 39 2.9051469 2 5 -0.6505535 3 40 2.9341513 2 6 0.0305572 1 41 3.6252248 2 7 0.1388531 1 42 4.3036067 2 8 0.2081703 1 43 4.7688268 2 9 0.3105742 1 44 6.0815790 2 10 0.4276251 1 45 8.8294413 2 11 0.7112782 1 46 9.2394168 2 12 0.7599265 1 47 9.5487307 2 13 0.9493998 1 48 0.2012215 3 14 1.0687165 1 49 0.2855691 3 15 1.0858747 1 50 0.8262106 3 16 1.1487749 1 51 1.0424460 3 17 1.9866488 1 52 1.1455189 3 18 2.3920849 1 53 1.6681273 3 19 2.7251094 1 54 2.9051469 3 20 2.8078505 1 55 2.9341513 3 21 3.1599703 1 56 3.6252248 3 22 3.1629490 1 57 4.3036067 3 23 4.0929420 1 58 4.7688268 3 24 4.1664412 1 59 6.0815790 3 25 5.0727994 1 60 8.8294413 3 26 5.6598596 1 61 9.2394168 3 27 7.5391220 1 62 9.5487307 3 28 8.9187473 1 63 0.7599265 4 29 9.3429451 1 64 1.0858747 4 30 9.3591134 1 65 2.8078505 4 31 9.8854378 1 66 3.1599703 4 32 14.6387444 1 67 4.1664412 4 33 0.2012215 2 68 8.9187473 4 34 0.2855691 2 69 9.3591134 4 35 0.8262106 2 ------------------------------------------------------------------------ @CHECKOUT-I, Total execution time : 0.8900 seconds. in runit xvtran 0 GETMEM: Allocated 38 MB of memory in. @GMOIAA-I, Processing MO integrals for spin case AA. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 553517 PPPH 172614 PPHH 13834 PHPH 8633 PHHH 1413 HHHH 49 TOTAL 750060 @FORMT2-I, Second-order MBPT correlation energies: ---------------------------------------------- E(SCF) = -100.061073392902 a.u. E2(AA) = -0.037334800642 a.u. E2(AB) = -0.219315574688 a.u. E2(TOT) = -0.293985175972 a.u. Total MBPT(2) energy = -100.355058568873 a.u. ---------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03153 [ 4 4 37 37]-0.03153 [ 5 4 52 37]-0.02443 [ 4 5 37 52]-0.02443 [ 3 3 10 10]-0.02081 [ 3 3 11 11]-0.01792 [ 5 3 52 10]-0.01689 [ 3 5 10 52]-0.01689 [ 4 3 37 10]-0.01689 [ 3 4 10 37]-0.01689 [ 5 5 52 48]-0.01659 [ 5 5 48 52]-0.01659 [ 4 4 37 33]-0.01659 [ 4 4 33 37]-0.01659 [ 5 3 52 16] 0.01655 ----------------------------------------------------------------------------- Norm of T2AB vector ( 27404 symmetry allowed elements): 0.1956060321. ----------------------------------------------------------------------------- @CHECKOUT-I, Total execution time : 0.3200 seconds. in runit xintprc 0 GETMEM: Allocated 38 MB of memory in. CCSD(T) energy will be calculated. Frozen core orbitals in analytic derivative calculation Correlation energies computed from initial T amplitudes: Initial T amplitudes: Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03153 [ 4 4 37 37]-0.03153 [ 5 4 52 37]-0.02443 [ 4 5 37 52]-0.02443 [ 3 3 10 10]-0.02081 [ 3 3 11 11]-0.01792 [ 5 3 52 10]-0.01689 [ 3 5 10 52]-0.01689 [ 4 3 37 10]-0.01689 [ 3 4 10 37]-0.01689 [ 5 5 52 48]-0.01659 [ 5 5 48 52]-0.01659 [ 4 4 37 33]-0.01659 [ 4 4 33 37]-0.01659 [ 5 3 52 16] 0.01655 ----------------------------------------------------------------------------- Norm of T2AB vector ( 27404 symmetry allowed elements): 0.1950892393. ----------------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0356088 a.u. The AB contribution to the correlation energy is: -0.2085728 a.u. The total correlation energy is -0.279790312090 a.u. W(mnij) AB contribution = 0.0330530699 a.u. W(abef) AB contribution = 0.0391760574 a.u. W(mbej) AB contribution = -0.0829667852 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 1 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0002345246-0.0131440114 5 48 T2 AA 0.0000025650 0.0036414019 5 4 52 37 T2 AB 0.0000007824 0.0024874482 5 5 48 48 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0320793 a.u. The AB contribution to the correlation energy is: -0.2113414 a.u. The total correlation energy is -0.275499951656 a.u. Convergence information after 1 iterations: Largest element of residual vector : -0.13144011E-01. Largest element of DIIS residual : -0.13144011E-01. W(mnij) AB contribution = 0.0335359335 a.u. W(abef) AB contribution = 0.0402071849 a.u. W(mbej) AB contribution = -0.0903418544 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 2 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000260494-0.0013356703 3 7 T2 AA 0.0000005350-0.0011871996 5 4 48 33 T2 AB 0.0000004027-0.0022305079 5 5 48 48 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0321812 a.u. The AB contribution to the correlation energy is: -0.2163076 a.u. The total correlation energy is -0.280670051495 a.u. Convergence information after 2 iterations: Largest element of residual vector : -0.22305079E-02. Largest element of DIIS residual : -0.15336339E-02. W(mnij) AB contribution = 0.0357759090 a.u. W(abef) AB contribution = 0.0422005350 a.u. W(mbej) AB contribution = -0.0959962222 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 3 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000285006-0.0018093197 4 33 T2 AA 0.0000001612 0.0002117642 5 3 52 10 T2 AB 0.0000001023-0.0004345001 3 3 10 10 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0319485 a.u. The AB contribution to the correlation energy is: -0.2166427 a.u. The total correlation energy is -0.280539693223 a.u. Convergence information after 3 iterations: Largest element of residual vector : -0.18093197E-02. Largest element of DIIS residual : -0.89806666E-03. W(mnij) AB contribution = 0.0367198265 a.u. W(abef) AB contribution = 0.0431030925 a.u. W(mbej) AB contribution = -0.0989839532 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 4 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000031151-0.0001562675 4 33 T2 AA 0.0000000442 0.0000742105 5 3 52 10 T2 AB 0.0000000233-0.0001622342 5 5 48 48 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318478 a.u. The AB contribution to the correlation energy is: -0.2172304 a.u. The total correlation energy is -0.280926004130 a.u. Convergence information after 4 iterations: Largest element of residual vector : -0.16223416E-03. Largest element of DIIS residual : -0.13201570E-03. W(mnij) AB contribution = 0.0367759082 a.u. W(abef) AB contribution = 0.0431150608 a.u. W(mbej) AB contribution = -0.0991335019 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 5 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000014859-0.0000958192 4 33 T2 AA 0.0000000058 0.0000062092 5 3 52 10 T2 AB 0.0000000059 0.0000228944 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318371 a.u. The AB contribution to the correlation energy is: -0.2172970 a.u. The total correlation energy is -0.280971182583 a.u. Convergence information after 5 iterations: Largest element of residual vector : -0.95819249E-04. Largest element of DIIS residual : 0.40710174E-04. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 5 48 ]-0.01466 [ 4 33 ]-0.01466 [ 5 49 ]-0.00684 [ 4 34 ]-0.00684 [ 3 7 ] 0.00616 [ 4 37 ]-0.00482 [ 5 52 ]-0.00482 [ 3 10 ]-0.00474 [ 3 25 ]-0.00412 [ 3 9 ]-0.00375 [ 3 17 ]-0.00365 [ 5 58 ] 0.00362 [ 4 43 ] 0.00362 [ 2 9 ] 0.00299 [ 4 35 ]-0.00294 ----------------------------------------------------------------------------- Norm of T1AA vector ( 111 symmetry allowed elements): 0.0286071083. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03268 [ 4 4 37 37]-0.03268 [ 3 3 10 10]-0.02325 [ 5 4 52 37]-0.02283 [ 4 5 37 52]-0.02283 [ 3 3 11 11]-0.02019 [ 5 5 52 48]-0.01740 [ 5 5 48 52]-0.01740 [ 4 4 37 33]-0.01740 [ 4 4 33 37]-0.01740 [ 3 3 16 16]-0.01662 [ 5 3 52 16] 0.01554 [ 3 5 16 52] 0.01554 [ 4 3 37 16] 0.01554 [ 3 4 16 37] 0.01554 ----------------------------------------------------------------------------- Norm of T2AB vector ( 27404 symmetry allowed elements): 0.2047642975. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0367873119 a.u. W(abef) AB contribution = 0.0431188108 a.u. W(mbej) AB contribution = -0.0991510559 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 6 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000003850-0.0000261865 4 33 T2 AA 0.0000000011-0.0000012938 5 4 52 37 T2 AB 0.0000000015-0.0000107769 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318341 a.u. The AB contribution to the correlation energy is: -0.2173014 a.u. The total correlation energy is -0.280969692119 a.u. Convergence information after 6 iterations: Largest element of residual vector : -0.26186471E-04. Largest element of DIIS residual : -0.11885644E-04. W(mnij) AB contribution = 0.0367880978 a.u. W(abef) AB contribution = 0.0431194771 a.u. W(mbej) AB contribution = -0.0991516437 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 7 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000896-0.0000045174 4 33 T2 AA 0.0000000004-0.0000007723 5 4 48 33 T2 AB 0.0000000006 0.0000042758 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318341 a.u. The AB contribution to the correlation energy is: -0.2173016 a.u. The total correlation energy is -0.280969751284 a.u. Convergence information after 7 iterations: Largest element of residual vector : -0.45174311E-05. Largest element of DIIS residual : -0.36553047E-05. W(mnij) AB contribution = 0.0367854616 a.u. W(abef) AB contribution = 0.0431168433 a.u. W(mbej) AB contribution = -0.0991438364 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 8 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000357-0.0000018685 4 33 T2 AA 0.0000000003-0.0000003412 4 3 33 10 T2 AB 0.0000000001-0.0000012018 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173009 a.u. The total correlation energy is -0.280969797082 a.u. Convergence information after 8 iterations: Largest element of residual vector : -0.18685116E-05. Largest element of DIIS residual : -0.14586114E-05. W(mnij) AB contribution = 0.0367855268 a.u. W(abef) AB contribution = 0.0431168985 a.u. W(mbej) AB contribution = -0.0991435459 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 9 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000135-0.0000008458 4 33 T2 AA 0.0000000000 0.0000000358 5 3 48 16 T2 AB 0.0000000000 0.0000002890 3 3 10 10 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969612369 a.u. Convergence information after 9 iterations: Largest element of residual vector : -0.84575679E-06. Largest element of DIIS residual : -0.39819180E-06. W(mnij) AB contribution = 0.0367854160 a.u. W(abef) AB contribution = 0.0431168004 a.u. W(mbej) AB contribution = -0.0991432279 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 10 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000031-0.0000001861 3 7 T2 AA 0.0000000000-0.0000000296 5 4 48 33 T2 AB 0.0000000000-0.0000000875 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969650420 a.u. Convergence information after 10 iterations: Largest element of residual vector : -0.18614146E-06. Largest element of DIIS residual : -0.11641614E-06. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 5 48 ]-0.01470 [ 4 33 ]-0.01470 [ 5 49 ]-0.00686 [ 4 34 ]-0.00686 [ 3 7 ] 0.00615 [ 4 37 ]-0.00482 [ 5 52 ]-0.00482 [ 3 10 ]-0.00473 [ 3 25 ]-0.00412 [ 3 9 ]-0.00375 [ 3 17 ]-0.00365 [ 5 58 ] 0.00362 [ 4 43 ] 0.00362 [ 2 9 ] 0.00299 [ 4 35 ]-0.00294 ----------------------------------------------------------------------------- Norm of T1AA vector ( 111 symmetry allowed elements): 0.0286561168. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03268 [ 4 4 37 37]-0.03268 [ 3 3 10 10]-0.02325 [ 5 4 52 37]-0.02282 [ 4 5 37 52]-0.02282 [ 3 3 11 11]-0.02018 [ 5 5 52 48]-0.01741 [ 5 5 48 52]-0.01741 [ 4 4 37 33]-0.01741 [ 4 4 33 37]-0.01741 [ 3 3 16 16]-0.01662 [ 5 3 52 16] 0.01554 [ 3 5 16 52] 0.01554 [ 4 3 37 16] 0.01554 [ 3 4 16 37] 0.01554 ----------------------------------------------------------------------------- Norm of T2AB vector ( 27404 symmetry allowed elements): 0.2047608025. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0367854491 a.u. W(abef) AB contribution = 0.0431168223 a.u. W(mbej) AB contribution = -0.0991433060 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 11 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000011-0.0000000558 5 48 T2 AA 0.0000000000 0.0000000064 5 4 48 33 T2 AB 0.0000000000-0.0000000149 4 4 37 37 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969658881 a.u. Convergence information after 11 iterations: Largest element of residual vector : -0.55776759E-07. Largest element of DIIS residual : 0.32571595E-07. W(mnij) AB contribution = 0.0367854592 a.u. W(abef) AB contribution = 0.0431168319 a.u. W(mbej) AB contribution = -0.0991433347 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 12 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000003 0.0000000184 3 6 T2 AA 0.0000000000 0.0000000035 5 3 52 10 T2 AB 0.0000000000-0.0000000102 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969661825 a.u. Convergence information after 12 iterations: Largest element of residual vector : 0.18441966E-07. Largest element of DIIS residual : 0.14352973E-07. W(mnij) AB contribution = 0.0367854622 a.u. W(abef) AB contribution = 0.0431168341 a.u. W(mbej) AB contribution = -0.0991433438 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 13 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000001-0.0000000056 3 8 T2 AA 0.0000000000 0.0000000010 5 3 52 6 T2 AB 0.0000000000 0.0000000035 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969662997 a.u. Convergence information after 13 iterations: Largest element of residual vector : -0.55960512E-08. Largest element of DIIS residual : 0.31794974E-08. W(mnij) AB contribution = 0.0367854637 a.u. W(abef) AB contribution = 0.0431168352 a.u. W(mbej) AB contribution = -0.0991433482 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 14 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000020 3 6 T2 AA 0.0000000000 0.0000000002 5 3 48 10 T2 AB 0.0000000000-0.0000000012 5 5 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969663375 a.u. Convergence information after 14 iterations: Largest element of residual vector : 0.19998345E-08. Largest element of DIIS residual : 0.10879603E-08. W(mnij) AB contribution = 0.0367854639 a.u. W(abef) AB contribution = 0.0431168353 a.u. W(mbej) AB contribution = -0.0991433486 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 15 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000-0.0000000004 3 9 T2 AA 0.0000000000-0.0000000001 5 4 52 37 T2 AB 0.0000000000 0.0000000004 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969663418 a.u. Convergence information after 15 iterations: Largest element of residual vector : -0.42625861E-09. Largest element of DIIS residual : -0.33287080E-09. Largest T1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 5 48 ]-0.01470 [ 4 33 ]-0.01470 [ 5 49 ]-0.00687 [ 4 34 ]-0.00687 [ 3 7 ] 0.00615 [ 4 37 ]-0.00482 [ 5 52 ]-0.00482 [ 3 10 ]-0.00473 [ 3 25 ]-0.00412 [ 3 9 ]-0.00375 [ 3 17 ]-0.00365 [ 5 58 ] 0.00362 [ 4 43 ] 0.00362 [ 2 9 ] 0.00299 [ 4 35 ]-0.00294 ----------------------------------------------------------------------------- Norm of T1AA vector ( 111 symmetry allowed elements): 0.0286562053. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03268 [ 4 4 37 37]-0.03268 [ 3 3 10 10]-0.02325 [ 5 4 52 37]-0.02282 [ 4 5 37 52]-0.02282 [ 3 3 11 11]-0.02018 [ 5 5 52 48]-0.01741 [ 5 5 48 52]-0.01741 [ 4 4 37 33]-0.01741 [ 4 4 33 37]-0.01741 [ 3 3 16 16]-0.01662 [ 5 3 52 16] 0.01554 [ 3 5 16 52] 0.01554 [ 4 3 37 16] 0.01554 [ 3 4 16 37] 0.01554 ----------------------------------------------------------------------------- Norm of T2AB vector ( 27404 symmetry allowed elements): 0.2047608435. ----------------------------------------------------------------------------- W(mnij) AB contribution = 0.0367854638 a.u. W(abef) AB contribution = 0.0431168352 a.u. W(mbej) AB contribution = -0.0991433484 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 16 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000 0.0000000002 3 6 T2 AA 0.0000000000 0.0000000000 5 4 52 37 T2 AB 0.0000000000-0.0000000001 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969663414 a.u. Convergence information after 16 iterations: Largest element of residual vector : 0.17911646E-09. Largest element of DIIS residual : -0.94885415E-10. W(mnij) AB contribution = 0.0367854638 a.u. W(abef) AB contribution = 0.0431168352 a.u. W(mbej) AB contribution = -0.0991433483 a.u. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation After 17 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- T1 AA 0.0000000000-0.0000000001 4 33 T2 AA 0.0000000000 0.0000000000 5 3 52 10 T2 AB 0.0000000000 0.0000000000 3 3 10 10 ------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969663403 a.u. Convergence information after 17 iterations: Largest element of residual vector : -0.55404722E-10. Largest element of DIIS residual : -0.29088381E-10. Amplitude equations converged in 17iterations. The AA contribution to the correlation energy is: -0.0318345 a.u. The AB contribution to the correlation energy is: -0.2173006 a.u. The total correlation energy is -0.280969663402 a.u. The CC iterations have converged. Summary of iterative solution of CC equations ----------------------------------------------------------- Correlation Total Iteration Energy Energy ----------------------------------------------------------- 0 -0.279790312090 -100.340863704992 DIIS 1 -0.275499951656 -100.336573344558 DIIS 2 -0.280670051495 -100.341743444397 DIIS 3 -0.280539693223 -100.341613086124 DIIS 4 -0.280926004130 -100.341999397032 DIIS 5 -0.280971182583 -100.342044575485 DIIS 6 -0.280969692119 -100.342043085021 DIIS 7 -0.280969751284 -100.342043144186 DIIS 8 -0.280969797082 -100.342043189984 DIIS 9 -0.280969612369 -100.342043005271 DIIS 10 -0.280969650420 -100.342043043322 DIIS 11 -0.280969658881 -100.342043051783 DIIS 12 -0.280969661825 -100.342043054727 DIIS 13 -0.280969662997 -100.342043055899 DIIS 14 -0.280969663375 -100.342043056277 DIIS 15 -0.280969663418 -100.342043056320 DIIS 16 -0.280969663414 -100.342043056316 DIIS 17 -0.280969663402 -100.342043056303 DIIS ----------------------------------------------------------- A miracle has come to pass. The CC iterations have converged. @DIMT3-I, Dimensions of T3 amplitudes : # abc # ijk Symmetry Spin 10737 1 1 1 10445 3 2 1 10445 3 3 1 10037 3 4 1 33912 15 1 2 32280 13 2 2 32280 13 3 2 30552 9 4 2 33912 15 1 3 32280 13 2 3 32280 13 3 3 30552 9 4 3 10737 1 1 4 10445 3 2 4 10445 3 3 4 10037 3 4 4 @DIMT3-I, Dimensions of T3 amplitudes : # abc # ijk Symmetry Spin 10737 1 1 1 10445 3 2 1 10445 3 3 1 10037 3 4 1 33912 15 1 2 32280 13 2 2 32280 13 3 2 30552 9 4 2 33912 15 1 3 32280 13 2 3 32280 13 3 3 30552 9 4 3 10737 1 1 4 10445 3 2 4 10445 3 3 4 10037 3 4 4 @TRPS-I, Welcome to TRPS. Watch your RUs ! @TRPS-I, Method is CCSD(T) @TRPS-I, Calculation type is second derivative @TRPS-I, Reference function information : Reference function is Hartree-Fock Reference function is RHF Hartree-Fock @TRPS-I, INT1 is true @TRPS-I, INT2 is true @TRPS-I, Lengths of ijka integrals. #1 858 #2 858 #3 2271 #4 2271 Max 2271 @INITRP-I, Initializing W intermediate lists. @SETOOOV-I, Some OOOV lists are being transposed. @TRPS-I, Available memory in integer words 9959040 Number of pre-allocated words for TRPS2 62688 Number of free words for TRPS2 9896352 @TRPS2-I, Spin case AAB @TRPS2-I, Number of free integer words 9896352 Number of free double words 4948176 Ratio 2 @TRPS2-I, E4TBAA -0.003770356966 @TRPS2-I, E4TAAA -1.93160554524044D-004 @TRPS2-I, E5ST A 0.000135399703111 @TRPS2-I, E5ST B 0.000070407725432 @SETOOOV-I, Some OOOV lists are being transposed. @GT3E4T-I, Computing fourth-order triples energy @GT3E4T-I, Sufficient memory for in-core algorithm. Memory available 9959040 Memory needed 545232 @GT3E4T-I, Triples energy contribution from IjKa -0.001152239197 @GT3E4T-I, Triples energy contribution from AbCi -0.001417833489 @GT3E4T-I, Total contribution from OOOV -0.001152239197 Total contribution from VVVO -0.001417833489 Total -0.002570072686 @DMPDEN-I, Dumping diagonal elements of density @CCENRG-I, CCSD/QCISD energy will now be evaluated. @CCENRG-I, Correlation energies. ECCAA -0.031834529873 ECCBB 0.000000000000 ECCAB -0.217300603655 Total -0.280969663402 @CCENRG-I, Reference energy -100.061073392902 CCSD/QCISD energy -100.342043056303 @TRPS-I, E4T (T(CCSD)) = -0.007927035041 E5ST = 0.000411614857 E4ST = 0.000000000000 In other words = -0.007927035041 = 0.000411614857 = 0.000000000000 @TRPS-I, CCSD = -100.342043056303 CCSD + T(CCSD) = -100.349970091344 CCSD(T) = -100.349558476487 @CHECKOUT-I, Total execution time : 7.6600 seconds. in runit xvcc 0 GETMEM: Allocated 38 MB of memory in. The Lambda equations are solved for CCSD(T). Initial lambda amplitudes: Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 5 48 ]-0.01470 [ 4 33 ]-0.01470 [ 5 49 ]-0.00687 [ 4 34 ]-0.00687 [ 3 7 ] 0.00615 [ 4 37 ]-0.00482 [ 5 52 ]-0.00482 [ 3 10 ]-0.00473 [ 3 25 ]-0.00412 [ 3 9 ]-0.00375 [ 3 17 ]-0.00365 [ 5 58 ] 0.00362 [ 4 43 ] 0.00362 [ 2 9 ] 0.00299 [ 4 35 ]-0.00294 ----------------------------------------------------------------------------- Norm of L1AA vector ( 111 symmetry allowed elements): 0.0286562054. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03268 [ 4 4 37 37]-0.03268 [ 3 3 10 10]-0.02325 [ 5 4 52 37]-0.02282 [ 4 5 37 52]-0.02282 [ 3 3 11 11]-0.02018 [ 5 5 52 48]-0.01741 [ 5 5 48 52]-0.01741 [ 4 4 37 33]-0.01741 [ 4 4 33 37]-0.01741 [ 3 3 16 16]-0.01662 [ 5 3 52 16] 0.01554 [ 3 5 16 52] 0.01554 [ 4 3 37 16] 0.01554 [ 3 4 16 37] 0.01554 ----------------------------------------------------------------------------- Norm of L2AB vector ( 27404 symmetry allowed elements): 0.2047608434. ----------------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0318487 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2173702 a.u. The total Lambda pseudoenergy is -0.281067655089 a.u. The AA contribution to the Lambda pseudoenergy is: -0.0318487 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2173702 a.u. The total Lambda pseudoenergy is -0.281067655089 a.u. Frozen core orbitals in analytic derivative calculation After 1 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0001515031 0.0081891325 5 48 L2 AA 0.0000021420-0.0035180247 5 4 48 33 L2 AB 0.0000007523-0.0040685826 5 5 48 48 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0340411 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2251947 a.u. The total Lambda pseudoenergy is -0.293276959568 a.u. Convergence information after 1 iterations: Largest element of residual vector : 0.81891325E-02. Largest element of DIIS residual : 0.81891325E-02. Frozen core orbitals in analytic derivative calculation After 2 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000547051-0.0031782108 5 48 L2 AA 0.0000006037 0.0012123136 5 4 48 33 L2 AB 0.0000002318 0.0016625773 5 5 48 48 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0335997 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2234533 a.u. The total Lambda pseudoenergy is -0.290652733460 a.u. Convergence information after 2 iterations: Largest element of residual vector : -0.31782108E-02. Largest element of DIIS residual : -0.44671183E-03. Frozen core orbitals in analytic derivative calculation After 3 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000033159-0.0001278946 2 8 L2 AA 0.0000000591-0.0000669078 5 3 51 11 L2 AB 0.0000000234-0.0000762650 3 3 11 11 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336940 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238279 a.u. The total Lambda pseudoenergy is -0.291215957555 a.u. Convergence information after 3 iterations: Largest element of residual vector : -0.12789457E-03. Largest element of DIIS residual : -0.13147235E-03. Frozen core orbitals in analytic derivative calculation After 4 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000013678-0.0000496504 3 6 L2 AA 0.0000000098-0.0000076543 5 3 51 11 L2 AB 0.0000000058-0.0000214687 3 3 8 11 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336893 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238107 a.u. The total Lambda pseudoenergy is -0.291189239802 a.u. Convergence information after 4 iterations: Largest element of residual vector : -0.49650440E-04. Largest element of DIIS residual : -0.45519800E-04. Frozen core orbitals in analytic derivative calculation After 5 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000005703-0.0000244458 3 10 L2 AA 0.0000000029 0.0000030970 5 4 48 33 L2 AB 0.0000000017-0.0000067891 3 3 10 10 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336888 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238103 a.u. The total Lambda pseudoenergy is -0.291187818505 a.u. Convergence information after 5 iterations: Largest element of residual vector : -0.24445798E-04. Largest element of DIIS residual : -0.16311722E-04. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 4 33 ]-0.00869 [ 5 48 ]-0.00869 [ 5 49 ]-0.00419 [ 4 34 ]-0.00419 [ 3 25 ]-0.00322 [ 3 17 ]-0.00322 [ 5 58 ] 0.00278 [ 4 43 ] 0.00278 [ 3 7 ] 0.00275 [ 3 19 ] 0.00243 [ 3 16 ]-0.00218 [ 3 27 ]-0.00209 [ 3 9 ]-0.00204 [ 3 18 ]-0.00202 [ 5 59 ] 0.00198 ----------------------------------------------------------------------------- Norm of L1AA vector ( 111 symmetry allowed elements): 0.0174068280. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03436 [ 4 4 37 37]-0.03436 [ 3 3 10 10]-0.02517 [ 5 4 52 37]-0.02460 [ 4 5 37 52]-0.02460 [ 3 3 11 11]-0.02161 [ 5 5 52 48]-0.01915 [ 5 5 48 52]-0.01915 [ 4 4 37 33]-0.01915 [ 4 4 33 37]-0.01915 [ 3 3 16 16]-0.01727 [ 3 3 10 7] 0.01696 [ 3 3 7 10] 0.01696 [ 5 3 52 10]-0.01696 [ 3 5 10 52]-0.01696 ----------------------------------------------------------------------------- Norm of L2AB vector ( 27404 symmetry allowed elements): 0.2156788199. ----------------------------------------------------------------------------- Frozen core orbitals in analytic derivative calculation After 6 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000001840-0.0000098781 3 6 L2 AA 0.0000000009-0.0000008667 5 4 52 37 L2 AB 0.0000000005-0.0000022059 3 3 10 10 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336886 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187562224 a.u. Convergence information after 6 iterations: Largest element of residual vector : -0.98780931E-05. Largest element of DIIS residual : -0.57587405E-05. Frozen core orbitals in analytic derivative calculation After 7 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000473-0.0000026384 3 6 L2 AA 0.0000000003-0.0000002879 4 3 37 6 L2 AB 0.0000000002-0.0000006743 3 3 7 7 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187430208 a.u. Convergence information after 7 iterations: Largest element of residual vector : -0.26383509E-05. Largest element of DIIS residual : -0.11163810E-05. Frozen core orbitals in analytic derivative calculation After 8 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000109-0.0000006154 3 6 L2 AA 0.0000000001-0.0000000741 4 3 36 11 L2 AB 0.0000000000 0.0000001619 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187422236 a.u. Convergence information after 8 iterations: Largest element of residual vector : -0.61538875E-06. Largest element of DIIS residual : 0.20690683E-06. Frozen core orbitals in analytic derivative calculation After 9 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000025-0.0000001279 3 6 L2 AA 0.0000000000 0.0000000212 5 4 52 37 L2 AB 0.0000000000-0.0000000290 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187432096 a.u. Convergence information after 9 iterations: Largest element of residual vector : -0.12788547E-06. Largest element of DIIS residual : -0.70116876E-07. Frozen core orbitals in analytic derivative calculation After 10 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000007 0.0000000290 2 8 L2 AA 0.0000000000 0.0000000060 5 4 63 12 L2 AB 0.0000000000 0.0000000096 3 3 11 11 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187434933 a.u. Convergence information after 10 iterations: Largest element of residual vector : 0.29012439E-07. Largest element of DIIS residual : 0.14587113E-07. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 4 33 ]-0.00869 [ 5 48 ]-0.00869 [ 5 49 ]-0.00418 [ 4 34 ]-0.00418 [ 3 25 ]-0.00322 [ 3 17 ]-0.00322 [ 5 58 ] 0.00278 [ 4 43 ] 0.00278 [ 3 7 ] 0.00277 [ 3 19 ] 0.00243 [ 3 16 ]-0.00217 [ 3 27 ]-0.00209 [ 3 9 ]-0.00203 [ 3 18 ]-0.00202 [ 5 59 ] 0.00199 ----------------------------------------------------------------------------- Norm of L1AA vector ( 111 symmetry allowed elements): 0.0174012768. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03436 [ 4 4 37 37]-0.03436 [ 3 3 10 10]-0.02517 [ 5 4 52 37]-0.02460 [ 4 5 37 52]-0.02460 [ 3 3 11 11]-0.02162 [ 5 5 52 48]-0.01915 [ 5 5 48 52]-0.01915 [ 4 4 37 33]-0.01915 [ 4 4 33 37]-0.01915 [ 3 3 16 16]-0.01727 [ 3 3 10 7] 0.01697 [ 3 3 7 10] 0.01697 [ 5 3 52 10]-0.01696 [ 3 5 10 52]-0.01696 ----------------------------------------------------------------------------- Norm of L2AB vector ( 27404 symmetry allowed elements): 0.2156810481. ----------------------------------------------------------------------------- Frozen core orbitals in analytic derivative calculation After 11 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000002 0.0000000073 2 8 L2 AA 0.0000000000 0.0000000015 4 3 36 11 L2 AB 0.0000000000-0.0000000031 4 4 6 6 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433755 a.u. Convergence information after 11 iterations: Largest element of residual vector : 0.72658971E-08. Largest element of DIIS residual : -0.44466094E-08. Frozen core orbitals in analytic derivative calculation After 12 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000001-0.0000000026 3 8 L2 AA 0.0000000000-0.0000000003 3 2 14 11 L2 AB 0.0000000000-0.0000000008 3 3 11 10 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433722 a.u. Convergence information after 12 iterations: Largest element of residual vector : -0.25822164E-08. Largest element of DIIS residual : -0.25290936E-08. Frozen core orbitals in analytic derivative calculation After 13 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000-0.0000000015 3 8 L2 AA 0.0000000000-0.0000000001 5 4 63 15 L2 AB 0.0000000000-0.0000000004 3 3 10 8 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433744 a.u. Convergence information after 13 iterations: Largest element of residual vector : -0.15348145E-08. Largest element of DIIS residual : -0.11403720E-08. Frozen core orbitals in analytic derivative calculation After 14 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000008 3 6 L2 AA 0.0000000000 0.0000000001 4 3 37 6 L2 AB 0.0000000000-0.0000000001 3 3 10 7 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433770 a.u. Convergence information after 14 iterations: Largest element of residual vector : 0.75619569E-09. Largest element of DIIS residual : 0.48858517E-09. Frozen core orbitals in analytic derivative calculation After 15 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000003 3 6 L2 AA 0.0000000000 0.0000000000 5 3 52 6 L2 AB 0.0000000000 0.0000000001 3 3 7 7 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433765 a.u. Convergence information after 15 iterations: Largest element of residual vector : 0.27981557E-09. Largest element of DIIS residual : 0.11840862E-09. Largest L1 amplitudes for spin case AA: i a i a i a ----------------------------------------------------------------------------- [ 4 33 ]-0.00869 [ 5 48 ]-0.00869 [ 5 49 ]-0.00418 [ 4 34 ]-0.00418 [ 3 25 ]-0.00322 [ 3 17 ]-0.00322 [ 5 58 ] 0.00278 [ 4 43 ] 0.00278 [ 3 7 ] 0.00277 [ 3 19 ] 0.00243 [ 3 16 ]-0.00217 [ 3 27 ]-0.00209 [ 3 9 ]-0.00203 [ 3 18 ]-0.00202 [ 5 59 ] 0.00199 ----------------------------------------------------------------------------- Norm of L1AA vector ( 111 symmetry allowed elements): 0.0174012644. ----------------------------------------------------------------------------- Largest L2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 5 5 52 52]-0.03436 [ 4 4 37 37]-0.03436 [ 3 3 10 10]-0.02517 [ 5 4 52 37]-0.02460 [ 4 5 37 52]-0.02460 [ 3 3 11 11]-0.02162 [ 5 5 52 48]-0.01915 [ 5 5 48 52]-0.01915 [ 4 4 37 33]-0.01915 [ 4 4 33 37]-0.01915 [ 3 3 16 16]-0.01727 [ 3 3 10 7] 0.01697 [ 3 3 7 10] 0.01697 [ 5 3 52 10]-0.01696 [ 3 5 10 52]-0.01696 ----------------------------------------------------------------------------- Norm of L2AB vector ( 27404 symmetry allowed elements): 0.2156810458. ----------------------------------------------------------------------------- Frozen core orbitals in analytic derivative calculation After 16 iterations, amplitude changes are: ------------------------------------------------------------------- Spin RMS Max. Max. change for Amplitude Case Change Change i j a b ------------------------------------------------------------------- L1 AA 0.0000000000 0.0000000001 3 6 L2 AA 0.0000000000 0.0000000000 4 3 37 6 L2 AB 0.0000000000 0.0000000000 3 3 10 7 ------------------------------------------------------------------- The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433761 a.u. Convergence information after 16 iterations: Largest element of residual vector : 0.71987256E-10. Largest element of DIIS residual : -0.37768721E-10. Amplitude equations converged in 16 iterations. The AA contribution to the Lambda pseudoenergy is: -0.0336885 a.u. The AB contribution to the Lambda pseudoenergy is: -0.2238104 a.u. The total Lambda pseudoenergy is -0.291187433764 a.u. Full Fbar is constructed for CCSD second derivatives s1 after singles, spin case 1 : 0.999038809126991 The AA contribution to the Lambda pseudoenergy is: 0.0000000 a.u. = 0.943257199232. A miracle has come to pass. The CC iterations have converged. @CHECKOUT-I, Total execution time : 3.9200 seconds. in runit xlambda 0 GETMEM: Allocated 38 MB of memory in. CCSD(T) density and intermediates are calculated. The perturbed orbitals are chosen canonical. The iterative expansion of D(ai) converged after 12 iterations. ---------------------------------------------------------------------- Natural orbital occupation numbers ---------------------------------------------------------------------- 2.00000 1.98482 1.96942 1.96942 1.96191 0.02808 0.01807 0.01807 0.01022 0.00575 0.00567 0.00567 0.00537 0.00537 0.00131 0.00100 0.00100 0.00097 0.00076 0.00076 0.00061 0.00061 0.00047 0.00047 0.00047 0.00046 0.00046 0.00045 0.00045 0.00038 0.00015 0.00014 0.00012 0.00012 0.00008 0.00008 0.00008 0.00008 0.00006 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00004 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Trace of density matrix : 10.0000000000. ---------------------------------------------------------------------- Density calculation successfully completed. @CHECKOUT-I, Total execution time : 1.5500 seconds. in runit xdens 0 GETMEM: Allocated 38 MB of memory in. One- and two-electron integral derivatives are calculated for RHF-CC/MBPT hessians and dipole derivatives. T F T T 0 Spherical gaussians are used. Evaluated one-electron integrals: dipole integrals 2 types of atoms 2 symmetry operations Reflection in the YZ-plane Reflection in the XZ-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 9 Number of symmetry independent atoms: 1 Highest orbital type: f 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type 1 CGTO's of f type Atomic type number 2 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 2 3 F #1 x 0 3 0 0 F #1 y 0 0 5 0 F #1 z 1 0 0 0 H #2 x 0 4 0 0 H #2 y 0 0 6 0 H #2 z 2 0 0 0 Cartesian Coordinates --------------------- Total number of coordinates: 6 1 F #1 x 0.0000000000 2 y 0.0000000000 3 z 0.0872852487 4 H #2 x 0.0000000000 5 y 0.0000000000 6 z -1.6454049981 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry 1 1 F #1 z 3 2 H #2 z 6 Symmetry 2 3 F #1 x 1 4 H #2 x 4 Symmetry 3 5 F #1 y 2 6 H #2 y 5 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 37 18 18 7 Symmetry 1 1 F #1 s 1 2 F #1 s 2 3 F #1 s 3 4 F #1 s 4 5 F #1 s 5 6 F #1 z 14 7 F #1 z 15 8 F #1 z 16 9 F #1 z 17 10 F #1 xx 18 11 F #1 xx 19 12 F #1 xx 20 13 F #1 yy 27 14 F #1 yy 28 15 F #1 yy 29 16 F #1 zz 33 17 F #1 zz 34 18 F #1 zz 35 19 F #1 xxz 40 20 F #1 xxz 41 21 F #1 yyz 50 22 F #1 yyz 51 23 F #1 zzz 54 24 F #1 zzz 55 25 H #2 s 56 26 H #2 s 57 27 H #2 s 58 28 H #2 s 59 29 H #2 z 66 30 H #2 z 67 31 H #2 z 68 32 H #2 xx 69 33 H #2 xx 70 34 H #2 yy 75 35 H #2 yy 76 36 H #2 zz 79 37 H #2 zz 80 Symmetry 2 38 F #1 x 6 39 F #1 x 7 40 F #1 x 8 41 F #1 x 9 42 F #1 xz 24 43 F #1 xz 25 44 F #1 xz 26 45 F #1 xxx 36 46 F #1 xxx 37 47 F #1 xyy 42 48 F #1 xyy 43 49 F #1 xzz 46 50 F #1 xzz 47 51 H #2 x 60 52 H #2 x 61 53 H #2 x 62 54 H #2 xz 73 55 H #2 xz 74 Symmetry 3 56 F #1 y 10 57 F #1 y 11 58 F #1 y 12 59 F #1 y 13 60 F #1 yz 30 61 F #1 yz 31 62 F #1 yz 32 63 F #1 xxy 38 64 F #1 xxy 39 65 F #1 yyy 48 66 F #1 yyy 49 67 F #1 yzz 52 68 F #1 yzz 53 69 H #2 y 63 70 H #2 y 64 71 H #2 y 65 72 H #2 yz 77 73 H #2 yz 78 Symmetry 4 74 F #1 xy 21 75 F #1 xy 22 76 F #1 xy 23 77 F #1 xyz 44 78 F #1 xyz 45 79 H #2 xy 71 80 H #2 xy 72 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 2 (x-translation) perturbation number: 3 perturbation 1 in 3 (y-translation) perturbation number: 5 perturbation 1 in 1 (z-translation) perturbation number: 1 relation for x-direction : 1 = - ( 2 ) relation for y-direction : 1 = - ( 2 ) relation for z-direction : 1 = - ( 2 ) 2 2 2 0 Translational invariance is used. Evaluation of 1e integral derivatives required 0.07 seconds. cpu in psphcrt 0.00000000000000D+000 cpu in intexp 0.00000000000000D+000 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.0700 seconds. in runit xvdint 0 GETMEM: Allocated 38 MB of memory in. Coupled-perturbed HF (CPHF) equations are solved for RHF-CC/MBPT second-order properties. There is 1 perturbation within irrep 1. CPHF converged after 12 iterations. Calculation of total derivative of f 1 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 25.00000000 uij elements 0.0000000 -0.0007815 0.0018952 0.0007815 0.0000000 -0.3877110 -0.0018952 0.3877110 0.0000000 0.0000000 0.0000000 canonical perturbed fock matrix 0.3686992 0.0000000 0.0000000 0.0000000 0.2902998 0.0000000 0.0000000 0.0000000 0.1452723 0.2248259 0.2248259 There is 1 perturbation within irrep 2. CPHF converged after 11 iterations. Calculation of total derivative of f 1 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 25.00000000 uij elements 0.0022723 -0.3545970 0.6074394 -0.0022723 0.3545970 -0.6074394 canonical perturbed fock matrix 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 There is 1 perturbation within irrep 3. CPHF converged after 11 iterations. Calculation of total derivative of f 1 Tolerances in treatment of perturbed canonical orbitals: Tol1: 0.00001000 Tol2: 25.00000000 uij elements 0.0022723 -0.3545970 0.6074394 -0.0022723 0.3545970 -0.6074394 canonical perturbed fock matrix 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 SCF static dipole polarizability -------------------------------- Ex Ey Ez Ex 4.267862 0.000000 0.000000 Ey 0.000000 4.267862 0.000000 Ez 0.000000 0.000000 5.711912 @CHECKOUT-I, Total execution time : 0.0300 seconds. in runit xcphf 0 GETMEM: Allocated 38 MB of memory in. Dipole polarizabilities are calculated at the CCSD(T) level. Perturbed canonical orbitals are used. Ex is a perturbation of irrep 2. Ey is a perturbation of irrep 3. Ez is a perturbation of irrep 1. 1 1 CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.2 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.74766228E-01. Largest element of DIIS residual : -0.74766228E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.10768715E-01. Largest element of DIIS residual : -0.13044247E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.12166449E-01. Largest element of DIIS residual : 0.18215628E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.12040049E-02. Largest element of DIIS residual : -0.86723526E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : -0.48228095E-03. Largest element of DIIS residual : -0.19839409E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.89204576E-04. Largest element of DIIS residual : -0.60690268E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.38735791E-04. Largest element of DIIS residual : -0.19335755E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.70905799E-05. Largest element of DIIS residual : 0.50399374E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.25380668E-05. Largest element of DIIS residual : -0.15560537E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.94879739E-06. Largest element of DIIS residual : 0.53571918E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.36177542E-06. Largest element of DIIS residual : -0.18213130E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.82572033E-07. Largest element of DIIS residual : 0.52924298E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.29169602E-07. Largest element of DIIS residual : 0.17172866E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.99702670E-08. Largest element of DIIS residual : 0.70704914E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.42348432E-08. Largest element of DIIS residual : 0.22747052E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.12337463E-08. Largest element of DIIS residual : -0.95765683E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.51574438E-09. Largest element of DIIS residual : -0.40252091E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.21988447E-09. Largest element of DIIS residual : 0.98259238E-10. Perturbed amplitude equations converged in 18 iterations. Dominant contributions to perturbed wavefunction: 5 0 49 0 0.0890845949 AA 4 0 34 0 0.0890845949 AA 3 3 10 8 -0.0640005820 ABAB 3 3 8 10 -0.0640005820 ABAB 3 3 8 7 0.0521702634 ABAB 3 3 7 8 0.0521702634 ABAB 3 3 7 7 0.0517115168 ABAB 3 3 10 7 -0.0505223307 ABAB 3 3 7 10 -0.0505223307 ABAB 3 3 10 10 0.0474815296 ABAB 3 3 10 6 0.0474705751 ABAB 3 3 6 10 0.0474705751 ABAB 3 0 8 0 -0.0473048843 AA 3 3 11 10 -0.0461015107 ABAB 3 3 10 11 -0.0461015107 ABAB 3 3 16 8 0.0441818706 ABAB 3 3 8 16 0.0441818706 ABAB 3 0 6 0 0.0430378499 AA 3 3 7 6 -0.0426703664 ABAB 3 3 6 7 -0.0426703664 ABAB Total CCSD gradient is 0.046055207523287. norm of converged amps 0.403548343671206 There are 30 ijk combinations. PARA: timing for (T) xsdcc 7.19 seconds. total triples energy 0.00000000000000D+000 total triples energy gradient 3.88036842448780D-003 total triples energy gradient 1.97168287909953D-004 total triples energy gradient 0.00000000000000D+000 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : -0.75451263E-01. Largest element of DIIS residual : -0.75451263E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : 0.87859347E-02. Largest element of DIIS residual : -0.16316091E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : -0.12302348E-01. Largest element of DIIS residual : 0.19441498E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.12656584E-02. Largest element of DIIS residual : -0.79835833E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.47636593E-03. Largest element of DIIS residual : -0.21169670E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : 0.96514157E-04. Largest element of DIIS residual : -0.59989362E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.38581458E-04. Largest element of DIIS residual : -0.21258218E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.83520424E-05. Largest element of DIIS residual : 0.52195356E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.26047170E-05. Largest element of DIIS residual : 0.13861405E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : 0.88470464E-06. Largest element of DIIS residual : 0.49735769E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.36397205E-06. Largest element of DIIS residual : -0.22280719E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.10773221E-06. Largest element of DIIS residual : -0.54039550E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : -0.34186675E-07. Largest element of DIIS residual : -0.17889163E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : -0.11176903E-07. Largest element of DIIS residual : 0.68784540E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.41989836E-08. Largest element of DIIS residual : 0.23454618E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.12708903E-08. Largest element of DIIS residual : -0.83747629E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : -0.45791696E-09. Largest element of DIIS residual : -0.42825766E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.23543421E-09. Largest element of DIIS residual : -0.13394390E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 19 iterations: Largest element of residual vector : -0.71416090E-10. Largest element of DIIS residual : 0.49387788E-10. Perturbed Lambda equations converged in 19 iterations. Dominant contributions to perturbed wavefunction: 3 3 10 8 -0.0724655282 ABAB 3 3 8 10 -0.0724655282 ABAB 3 3 8 7 0.0621432212 ABAB 3 3 7 8 0.0621432212 ABAB 3 3 7 7 0.0609683524 ABAB 5 0 49 0 0.0591785056 AA 4 0 34 0 0.0591785056 AA 3 3 10 7 -0.0557645333 ABAB 3 3 7 10 -0.0557645333 ABAB 3 3 10 6 0.0543756368 ABAB 3 3 6 10 0.0543756368 ABAB 3 3 7 6 -0.0519693709 ABAB 3 3 6 7 -0.0519693709 ABAB 3 3 10 10 0.0492564279 ABAB 3 3 11 10 -0.0488734365 ABAB 3 3 10 11 -0.0488734365 ABAB 3 3 16 8 0.0475300349 ABAB 3 3 8 16 0.0475300349 ABAB 5 3 48 8 -0.0419297368 ABAB 3 5 8 48 -0.0419297368 ABAB Total CCSD gradient is 0.051825169610121. The first-order density matrix is being calculated (Symmetry block 1, perturbation 1) There are 0 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.2 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 12 iterations. 1 2 CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.2 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.92024360E-01. Largest element of DIIS residual : 0.92024360E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.15561243E-01. Largest element of DIIS residual : -0.12788518E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20943706E-01. Largest element of DIIS residual : 0.72690375E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.33016364E-02. Largest element of DIIS residual : -0.25667488E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.12468868E-02. Largest element of DIIS residual : 0.50276616E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.30409654E-03. Largest element of DIIS residual : -0.23595492E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.12017938E-03. Largest element of DIIS residual : 0.36710966E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.26394570E-04. Largest element of DIIS residual : -0.15932912E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.52905960E-05. Largest element of DIIS residual : 0.47069957E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.42352669E-05. Largest element of DIIS residual : -0.46962642E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.19616742E-05. Largest element of DIIS residual : 0.11828204E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.92210066E-06. Largest element of DIIS residual : -0.53601502E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.27125343E-06. Largest element of DIIS residual : -0.14282937E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.11578254E-06. Largest element of DIIS residual : -0.43423473E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.31912211E-07. Largest element of DIIS residual : -0.13540755E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.92290988E-08. Largest element of DIIS residual : -0.38054061E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.21243703E-08. Largest element of DIIS residual : -0.16955203E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.90784062E-09. Largest element of DIIS residual : -0.52762204E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 19 iterations: Largest element of residual vector : -0.26294038E-09. Largest element of DIIS residual : -0.14931695E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 20 iterations: Largest element of residual vector : -0.97534703E-10. Largest element of DIIS residual : -0.56004920E-10. Perturbed amplitude equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 4 0 6 0 0.1330372442 AA 4 0 9 0 -0.0823584768 AA 4 4 37 9 -0.0532884555 ABAB 4 4 9 37 -0.0532884555 ABAB 4 4 37 6 0.0517218594 ABAB 4 4 6 37 0.0517218594 ABAB 4 4 33 9 -0.0448226840 ABAB 4 4 9 33 -0.0448226840 ABAB 4 4 33 6 0.0447437959 ABAB 4 4 6 33 0.0447437959 ABAB 4 4 37 12 0.0421842289 ABAB 4 4 12 37 0.0421842289 ABAB 4 0 8 0 -0.0419421526 AA 5 0 63 0 0.0405058124 AA 4 0 12 0 0.0405058124 AA 4 3 6 10 0.0377943147 ABAB 3 4 10 6 0.0377943147 ABAB 5 4 52 6 0.0373610770 ABAB 4 5 6 52 0.0373610770 ABAB 5 4 52 9 -0.0342737863 ABAB norm of converged amps 0.372412823889172 There are 30 ijk combinations. PARA: timing for (T) xsdcc 6.69 seconds. total triples energy -7.51542018361653D-003 total triples energy gradient 0.00000000000000D+000 total triples energy gradient 0.00000000000000D+000 total triples energy gradient 0.00000000000000D+000 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.96687475E-01. Largest element of DIIS residual : 0.96687475E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.12505397E-01. Largest element of DIIS residual : -0.16510685E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20424629E-01. Largest element of DIIS residual : 0.77552491E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.33457884E-02. Largest element of DIIS residual : -0.24346805E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.13380248E-02. Largest element of DIIS residual : 0.46986693E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.30102511E-03. Largest element of DIIS residual : -0.22864871E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.11699178E-03. Largest element of DIIS residual : 0.39182433E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.27784349E-04. Largest element of DIIS residual : -0.17905612E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.59456187E-05. Largest element of DIIS residual : 0.39794957E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.36625611E-05. Largest element of DIIS residual : -0.40851501E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.17861922E-05. Largest element of DIIS residual : 0.96315898E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.77024181E-06. Largest element of DIIS residual : -0.50680789E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.24175643E-06. Largest element of DIIS residual : -0.12186110E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.10128062E-06. Largest element of DIIS residual : -0.42995271E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.31740306E-07. Largest element of DIIS residual : -0.14258489E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.93637512E-08. Largest element of DIIS residual : -0.33753468E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.24579106E-08. Largest element of DIIS residual : -0.15835406E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.92920301E-09. Largest element of DIIS residual : -0.60024095E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 19 iterations: Largest element of residual vector : 0.37274907E-09. Largest element of DIIS residual : -0.19211514E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 20 iterations: Largest element of residual vector : -0.12216408E-09. Largest element of DIIS residual : -0.79462627E-10. Perturbed Lambda equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 4 0 6 0 0.0931231501 AA 4 4 33 6 0.0612733324 ABAB 4 4 6 33 0.0612733324 ABAB 4 4 37 9 -0.0592758573 ABAB 4 4 9 37 -0.0592758573 ABAB 4 4 33 9 -0.0590346541 ABAB 4 4 9 33 -0.0590346541 ABAB 4 4 37 6 0.0579261830 ABAB 4 4 6 37 0.0579261830 ABAB 4 0 9 0 -0.0558013482 AA 4 3 6 10 0.0481463513 ABAB 3 4 10 6 0.0481463513 ABAB 5 4 48 6 0.0466622059 ABAB 4 5 6 48 0.0466622059 ABAB 4 4 37 12 0.0466240280 ABAB 4 4 12 37 0.0466240280 ABAB 5 4 52 6 0.0435819559 ABAB 4 5 6 52 0.0435819559 ABAB 4 3 6 7 -0.0403162227 ABAB 3 4 7 6 -0.0403162227 ABAB The first-order density matrix is being calculated (Symmetry block 2, perturbation 1) There are 0 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.1 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 11 iterations. 1 3 CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) MO basis integral derivatives are being calculated (Symmetry block 3, perturbation 1) First derivative of the wavefunction is calculated (Symmetry block 3, perturbation 1) Frozen core orbitals in analytic derivative calculation Resorts of perturbed amplitudes and integrals required 0.0 seconds. Construction of required 0.2 seconds. Starting iterative solution of the perturbed CC equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.92024360E-01. Largest element of DIIS residual : 0.92024360E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.15561243E-01. Largest element of DIIS residual : -0.12788518E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20943706E-01. Largest element of DIIS residual : 0.72690375E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.33016364E-02. Largest element of DIIS residual : -0.25667488E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.12468868E-02. Largest element of DIIS residual : 0.50276616E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.30409654E-03. Largest element of DIIS residual : -0.23595492E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.12017938E-03. Largest element of DIIS residual : 0.36710966E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.26394570E-04. Largest element of DIIS residual : -0.15932912E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.52905960E-05. Largest element of DIIS residual : 0.47069957E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.42352669E-05. Largest element of DIIS residual : -0.46962642E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.19616742E-05. Largest element of DIIS residual : 0.11828204E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.92210066E-06. Largest element of DIIS residual : -0.53601502E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.27125343E-06. Largest element of DIIS residual : -0.14282937E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.11578254E-06. Largest element of DIIS residual : -0.43423473E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.31912211E-07. Largest element of DIIS residual : -0.13540755E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.92290988E-08. Largest element of DIIS residual : -0.38054061E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.21243703E-08. Largest element of DIIS residual : -0.16955203E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : -0.90784064E-09. Largest element of DIIS residual : -0.52762208E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 19 iterations: Largest element of residual vector : -0.26294036E-09. Largest element of DIIS residual : -0.14931694E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 20 iterations: Largest element of residual vector : -0.97534716E-10. Largest element of DIIS residual : -0.56004942E-10. Perturbed amplitude equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 5 0 6 0 0.1330372442 AA 5 0 9 0 -0.0823584768 AA 5 5 52 9 -0.0532884555 ABAB 5 5 9 52 -0.0532884555 ABAB 5 5 52 6 0.0517218594 ABAB 5 5 6 52 0.0517218594 ABAB 5 5 48 9 -0.0448226840 ABAB 5 5 9 48 -0.0448226840 ABAB 5 5 48 6 0.0447437959 ABAB 5 5 6 48 0.0447437959 ABAB 5 5 52 12 -0.0421842289 ABAB 5 5 12 52 -0.0421842289 ABAB 5 0 8 0 -0.0419421526 AA 5 0 12 0 -0.0405058124 AA 4 0 63 0 0.0405058124 AA 5 3 6 10 0.0377943147 ABAB 3 5 10 6 0.0377943147 ABAB 5 4 6 37 0.0373610770 ABAB 4 5 37 6 0.0373610770 ABAB 5 4 9 37 -0.0342737863 ABAB norm of converged amps 0.372412823890324 There are 30 ijk combinations. PARA: timing for (T) xsdcc 6.68 seconds. total triples energy -7.51542018361653D-003 total triples energy gradient 0.00000000000000D+000 total triples energy gradient 0.00000000000000D+000 total triples energy gradient 0.00000000000000D+000 Frozen core orbitals in analytic derivative calculation Starting iterative solution of the perturbed Lambda equations. The DIIS procedure is used to accelerate convergence. Convergence criterion is 10**(-10). Maximum number of iterations is 50. Frozen core orbitals in analytic derivative calculation Convergence information after 1 iterations: Largest element of residual vector : 0.96687475E-01. Largest element of DIIS residual : 0.96687475E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 2 iterations: Largest element of residual vector : -0.12505397E-01. Largest element of DIIS residual : -0.16510685E-01. Frozen core orbitals in analytic derivative calculation Convergence information after 3 iterations: Largest element of residual vector : 0.20424629E-01. Largest element of DIIS residual : 0.77552491E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 4 iterations: Largest element of residual vector : 0.33457884E-02. Largest element of DIIS residual : -0.24346805E-02. Frozen core orbitals in analytic derivative calculation Convergence information after 5 iterations: Largest element of residual vector : 0.13380248E-02. Largest element of DIIS residual : 0.46986693E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 6 iterations: Largest element of residual vector : -0.30102511E-03. Largest element of DIIS residual : -0.22864871E-03. Frozen core orbitals in analytic derivative calculation Convergence information after 7 iterations: Largest element of residual vector : -0.11699178E-03. Largest element of DIIS residual : 0.39182433E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 8 iterations: Largest element of residual vector : -0.27784349E-04. Largest element of DIIS residual : -0.17905612E-04. Frozen core orbitals in analytic derivative calculation Convergence information after 9 iterations: Largest element of residual vector : 0.59456187E-05. Largest element of DIIS residual : 0.39794957E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 10 iterations: Largest element of residual vector : -0.36625611E-05. Largest element of DIIS residual : -0.40851501E-05. Frozen core orbitals in analytic derivative calculation Convergence information after 11 iterations: Largest element of residual vector : -0.17861922E-05. Largest element of DIIS residual : 0.96315898E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 12 iterations: Largest element of residual vector : -0.77024181E-06. Largest element of DIIS residual : -0.50680789E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 13 iterations: Largest element of residual vector : 0.24175643E-06. Largest element of DIIS residual : -0.12186110E-06. Frozen core orbitals in analytic derivative calculation Convergence information after 14 iterations: Largest element of residual vector : 0.10128062E-06. Largest element of DIIS residual : -0.42995271E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 15 iterations: Largest element of residual vector : 0.31740306E-07. Largest element of DIIS residual : -0.14258489E-07. Frozen core orbitals in analytic derivative calculation Convergence information after 16 iterations: Largest element of residual vector : 0.93637513E-08. Largest element of DIIS residual : -0.33753468E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 17 iterations: Largest element of residual vector : 0.24579106E-08. Largest element of DIIS residual : -0.15835406E-08. Frozen core orbitals in analytic derivative calculation Convergence information after 18 iterations: Largest element of residual vector : 0.92920296E-09. Largest element of DIIS residual : -0.60024098E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 19 iterations: Largest element of residual vector : 0.37274916E-09. Largest element of DIIS residual : -0.19211517E-09. Frozen core orbitals in analytic derivative calculation Convergence information after 20 iterations: Largest element of residual vector : -0.12216408E-09. Largest element of DIIS residual : -0.79462627E-10. Perturbed Lambda equations converged in 20 iterations. Dominant contributions to perturbed wavefunction: 5 0 6 0 0.0931231501 AA 5 5 48 6 0.0612733324 ABAB 5 5 6 48 0.0612733324 ABAB 5 5 52 9 -0.0592758573 ABAB 5 5 9 52 -0.0592758573 ABAB 5 5 48 9 -0.0590346541 ABAB 5 5 9 48 -0.0590346541 ABAB 5 5 52 6 0.0579261830 ABAB 5 5 6 52 0.0579261830 ABAB 5 0 9 0 -0.0558013482 AA 5 3 6 10 0.0481463513 ABAB 3 5 10 6 0.0481463513 ABAB 5 4 6 33 0.0466622059 ABAB 4 5 33 6 0.0466622059 ABAB 5 5 52 12 -0.0466240280 ABAB 5 5 12 52 -0.0466240280 ABAB 5 4 6 37 0.0435819559 ABAB 4 5 37 6 0.0435819559 ABAB 5 3 6 7 -0.0403162227 ABAB 3 5 7 6 -0.0403162227 ABAB The first-order density matrix is being calculated (Symmetry block 3, perturbation 1) There are 0 special pairs. Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.1 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 11 iterations. @CHECKOUT-I, Total execution time : 58.5000 seconds. in runit xsdcc 0 ------------------------------------------------------------------- CCSD(T) Polarizability Tensor (in a.u.) ------------------------------------------------------------------- X Y Z X 4.8787581 0.0000000 0.0000000 Y 0.0000000 4.8787581 0.0000000 Z 0.0000000 0.0000000 6.3108171 ------------------------------------------------------------------- ------------------------------------------------------------------- HF-SCF Polarizability Tensor (in a.u.) ------------------------------------------------------------------- X Y Z X 4.2678622 0.0000000 0.0000000 Y 0.0000000 4.2678622 0.0000000 Z 0.0000000 0.0000000 5.7119123 ------------------------------------------------------------------- in runit xjoda 0