************************************************************************* AAAAA CCCCCC EEEEEEEE SSSSSS 2222222222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCC EEE SSS 222 222 AAAAAAAAA CCC EEEEEE SSSS 222 222 AAA AAA CCC EEE SSS 222 222 AAA AAA CCC EEE SSS SSS 222 222 AAA AAA CCCCCC EEEEEEEE SSSSSS 2222222222 ************************************************************************* ******************************************************* * ACES2: Advanced Concepts in Electronic Structure II * ******************************************************* Department of Chemistry and Biochemistry Institut für Physikalische Chemie University of Texas at Austin Universität Mainz Austin, TX 48792, USA D-55099 Mainz, Germany Mainz-Austin-Budapest-Version 2005 ------------------------------------------------------------------- ACES2 Control Parameters ------------------------------------------------------------------- External Internal Value Units Name Name ------------------------------------------------------------------- PRINT IPRNT 0 *** CALCLEVEL ICLLVL MBPT(2) [ 1] *** DERIV_LEV IDRLVL SECOND [ 2] *** CC_CONV ICCCNV 10D- 7 *** SCF_CONV ISCFCV 10D- 10 *** XFORM_TOL IXFTOL 10D- 11 *** CC_MAXCYC ICCCYC 0 cycles LINDEP_TOL ILINDP 8 *** RDO IRDOFM ON [ 1] *** SCF_EXTRAPO IRPP ON [ 1] *** REFERENCE IREFNC UHF [ 1] *** CC_EXPORDER ICCEOR 0 *** TAMP_SUM IEVERY 0 *** NTOP_TAMP ITOPT2 15 *** CCORBOPT ICCORB OFF [ 0] x 0.01 SCF_MAXCYC ISCFCY 150 cycles OCCUPATION IOCCU ESTIMATED BY SCF PROPS IPROPS OFF [ 0] *** RELAX_DENS IRDENS ON [ 1] *** SCF_EXPORDE IRPPOR 6 *** CC_EXTRAPOL ICCEXT DIIS [ 1] *** BRUECKNER IBRKNR OFF [ 0] *** XFIELD IXEFLD 0 x 10-6 YFIELD IYEFLD 0 x 10-6 ZFIELD IZEFLD 0 x 10-6 SAVE_INTS ISVINT OFF [ 0] *** DROPMO IDRPMO NONE CHARGE ICHRGE 0 *** MULTIPLICTY IMULTP 2 *** CPHF_CONVER ICPHFT 10D- 12 *** CPHF_MAXCYC ICPHFC 64 cycles INCORE INCORE OFF [ 0] *** MEMORY_SIZE IMEMSZ 40000000 words FILE_RECSIZ IFLREC 4096 words NON-HF INONHF OFF [ 0] *** ORBITALS IORBTP STANDARD [ 0] *** SCF_EXPSTAR IRPPLS 8 *** LOCK_ORBOCC ILOCOC OFF [ 0] *** HBAR IHBAR OFF [ 0] *** CACHE_RECS ICHREC 10 *** GUESS IGUESS MOREAD [ 0] *** JODA_PRINT IJPRNT 0 *** GEO_METHOD INR SINGLE_POINT [ 5] *** GEO_CONV ICONTL 5 H/bohr EIGENVECTOR IVEC 1 *** NEGEVAL IDIE ABORT [ 0] *** CURVILINEAR ICURVY OFF [ 0] *** SCALE_ON ISTCRT 0 *** GEO_MAXSTEP IMXSTP 300 millibohr VIBRATION IVIB ANALYTIC [ 1] *** EVAL_HESS IRECAL 0 # of cyc. INTEGRALS INTTYP VMOL [ 1] *** FD_STEPSIZE IDISFD 0 10-4 bohr POINTS IGRDFD 0 *** CONTRACTION ICNTYP GENERAL [ 1] *** SYMMETRY ISYM ON [ 0] *** BASIS IBASIS PVDZ [ 13] *** SPHERICAL IDFGHI ON [ 1] *** RESET_FLAGS IRESET OFF [ 0] *** PERT_ORB IPTORB STANDARD [ 0] *** GENBAS_1 IGNBS1 0 *** GENBAS_2 IGNBS2 0 *** GENBAS_3 IGNBS3 0 *** COORDINATES ICOORD INTERNAL [ 0] *** SYM_CHECK ISYMCK OVERRIDE [ 1] *** SCF_PRINT ISCFPR 0 *** ECP IECP OFF [ 0] *** RESTART_CC ICCRES OFF [ 0] *** TRANS_INV ITRAIN USE [ 0] *** HFSTABILITY ISTABL OFF [ 0] *** ROT_EVEC ROTVEC 0 *** BRUCK_CONV IBRTOL 10D- 4 *** UNITS IUNITS ANGSTROM [ 0] *** FD_USEGROUP IFDGRP FULL [ 0] *** FD_PROJECT IFDPRJ ON [ 0] *** FD_CALTYPE IFDCAL GRADONLY [ 0] *** VTRAN IVTRAN FULL/PARTIAL [ 0] *** HF2_FILE IHF2Fl USE [ 1] *** SUBGROUP ISUBGP DEFAULT [ 0] *** SUBGRPAXIS ISBXYZ X [ 0] *** EXCITE IEXCIT NONE [ 0] *** LINEQ_CONV IZTACN 10D- 7 cycles TREAT_PERT ITREAT SIMULTANEOUS [ 0] *** ESTATE_PROP IEXPRP OFF [ 0] *** GEO_MAXCYC IOPTCY 50 *** ABCDTYPE IABCDT STANDARD [ 0] *** AO_LADDERS IAOLAD SINGLEPASS [ 1] *** FOCK IFOCK AO [ 1] *** ESTATE_MAXC IEXMXC 20 *** ESTATE_CONV IEXTOL 10D- 5 *** DIRECT IDIRCT OFF [ 0] *** GAMMA_ABCD IGABCD STORE [ 0] *** LINEQ_TYPE ILTYPE DIIS [ 1] *** LINEQ_MAXCY ILMAXC 50 *** RESRAMAN IRESRM OFF [ 0] *** PSI IPSI OFF [ 0] *** GAMMA_ABCI IGABCI STORE [ 0] *** ESTATE_DIAG IEXDIG ITERATIVE [ 0] *** FC_FIELD IFINFC 0 x 10-6 SD_FIELD IFINSD 0 x 10-6 DIFF_TYPE IDIFTY RELAXED [ 0] *** LINEQ_EXPOR ILMAXD 5 *** FINITE_PERT IFIPER 0 x 10-6 ANHARMONIC IANHAR OFF [ 0] *** CC_PROGRAM ICCPRO VCC [ 0] *** OPEN-SHELL IOPEN SPIN-ORBITAL [ 0] *** UIJ_THRESHO IUIJTH 25 *** SCF_DAMPING IDAMP 0 x 10-3 PROP_INTEGR IINTYP INTERNAL [ 0] *** ANH_SYMMETR IANHSM NONABELIAN [ 0] *** ANH_ALGORIT IANALG STANDARD [ 0] *** EOM_NONIT EOMNON OFF [ 0] *** GEO_ALGORIT IGEALG STANDARD [ 0] *** ANH_DERIVAT IANDER SECOND [ 1] *** SPINROTATIO ISRCON OFF [ 0] *** CIS_CONV ICISTL 5 *** ANH_STEPSIZ ICUBST 50000 x 10-6 SPIN_FLIP ISPFLP OFF [ 0] *** GRID IGRID OFF [ 0] *** DBOC IDBOC OFF [ 0] *** EOMFOLLOW IEOMSR ENERGY [ 0] *** T3_EXTRAPOL IT3EXT OFF [ 0] *** ESTATE_LOCK IESLOC OFF [ 0] *** UNOS IUNOS OFF [ 0] *** FREQ_ALGORI IVIALG STANDARD [ 0] *** RELATIVIST IRELAT OFF [ 0] *** FROZEN_CORE IFROCO OFF [ 0] *** EXCITATION IEXCIT 0 *** MRCC_INPUT IMRCC ON [ 1] *** GIAO IGIAO OFF [ 1] *** ------------------------------------------------------------------- 3 entries found in Z-matrix Job Title : Calculation of second derivatives at UHF-MP2 level using finite differences There are 3 unique internal coordinates. Of these, 0 will be optimized. User supplied Z-matrix: -------------------------------------------------------------------------------- SYMBOL BOND LENGTH ANGLE ANGLE DIHED ANGLE TO (ANGST) WRT (DEG) WRT (DEG) -------------------------------------------------------------------------------- O O 1 R1 H 1 R2 2 A *Initial values for internal coordinates* Name Value R1 1.293779 R2 0.954698 A 105.129180 -------------------------------------------------------------------------------- 1 O 8 15.99491 2 O 8 15.99491 3 H 1 1.00783 Rotational constants (in cm-1): 1.1237665217 1.1855068800 21.5779917733 Rotational constants (in MHz): 33689.6774962905 35540.6071322073 646892.0098701423 ******************************************************************************** The full molecular point group is C s . The largest Abelian subgroup of the full molecular point group is C s . The computational point group is C s . ******************************************************************************** -------------------------------------------------------------------------------- Analysis of internal coordinates specified by Z-matrix -------------------------------------------------------------------------------- *The nuclear repulsion energy is 32.96688 a.u. *There are 3 degrees of freedom within the tot. symm. molecular subspace. *Z-matrix requests optimization of 0 coordinates. *The optimization is constrained. *The following 3 parameters can have non-zero derivatives within the totally symmetric subspace: A [ 3] R2 [ 2] R1 [ 1] *The following 0 parameters are to be optimized: *The following coordinates must be varied in an unconstrained optimization. A [ 3] R2 [ 2] R1 [ 1] -------------------------------------------------------------------------------- ---------------------------------------------------------------- Z-matrix Atomic Coordinates (in bohr) Symbol Number X Y Z ---------------------------------------------------------------- O 8 1.16540711 0.12351461 0.00000000 O 8 -1.27505415 -0.02354466 0.00000000 H 1 1.74017812 -1.58659568 0.00000000 ---------------------------------------------------------------- Interatomic distance matrix (Angstroms) O O H [ 1] [ 2] [ 3] O [ 1] 0.00000 O [ 2] 1.29378 0.00000 H [ 3] 0.95470 1.79724 0.00000 Rotational constants (in cm-1): 21.5779917733 1.1855068800 1.1237665217 Rotational constants (in MHz): 646892.0098701417 35540.6071322073 33689.6774962905 There are 33 basis functions. in runit xjoda 0 One- and two-electron integrals over symmetry-adapted AOs are calculated. Spherical harmonics are used. Integrals less than 0.10E-13 are neglected. Nuclear repulsion energy : 32.9668839964 a.u. required memory for a1 array 4026408 words required memory for a2 array 2092120 words GETMEM: Allocated 30 MB of memory in. @MOLECU-I, One electron integrals required 0.04000 seconds. @TWOEL-I, 43766 integrals of symmetry type I I I I @TWOEL-I, 22231 integrals of symmetry type I J I J @TWOEL-I, 12703 integrals of symmetry type I I J J @TWOEL-I, Total number of 2-e integrals 78700. @MOLECU-I, Two electron integrals required 0.60000 seconds. @CHECKOUT-I, Total execution time : 0.6600 seconds. in runit xvmol 0 GETMEM: Allocated 152 MB of memory in. @CHECKOUT-I, Total execution time : 0.0100 seconds. in runit xvmol2ja 0 There are 33 functions in the AO basis. There are 2 irreducible representations. Irrep # of functions 1 24 2 9 Parameters for SCF calculation: SCF reference function: UHF Maximum number of iterations: 150 Full symmetry point group: C s Computational point group: C s Initial density matrix: CORE SCF convergence tolerance: 10**(-10) DIIS convergence acceleration: ON Latest start for DIIS: 8 DIIS order: 6 Memory information: 113823 words required. Fock matrices are constructed from AO integral file. GETMEM: Allocated 0 MB of memory in. Initialization and symmetry analysis required 0.000 seconds. @INITGES-I, Occupancies from core Hamiltonian: Alpha population by irrep: 7 2 Beta population by irrep: 6 2 -------------------------------------------------------------------- Iteration Total Energy Largest Density Difference -------------------------------------------------------------------- processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 0 32.9668839964 0.0000000000D+00 current occupation vector 7 2 6 2 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 1 -139.8446195550 0.4987719042D+01 largest error matrix element: -0.5409668073D+01 norm of error vector: 0.1582389328D+02 current occupation vector 7 2 6 2 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 2 -144.7572607493 0.4526229210D+01 largest error matrix element: -0.3128077988D+01 norm of error vector: 0.1247232037D+02 current occupation vector 8 1 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 3 -147.2287751141 0.3678954764D+01 largest error matrix element: 0.3595142589D+01 norm of error vector: 0.9886079785D+01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 4 -147.1437608309 0.3164010382D+01 largest error matrix element: 0.3816772836D+01 norm of error vector: 0.9979986822D+01 current occupation vector 8 1 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 5 -147.7092307895 0.3122631754D+01 largest error matrix element: -0.3124395869D+01 norm of error vector: 0.9182386084D+01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 6 -148.0853391466 0.1620318754D+01 largest error matrix element: -0.2638621703D+01 norm of error vector: 0.7162272561D+01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 7 -147.3007255847 0.1493777643D+01 largest error matrix element: -0.2852548179D+01 norm of error vector: 0.9036275372D+01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 8 -147.1990079466 0.1387827982D+01 largest error matrix element: 0.2717862108D+01 norm of error vector: 0.8653013366D+01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 9 -150.1480225899 0.1083718042D+01 largest error matrix element: -0.1872023443D+00 norm of error vector: 0.7726368276D+00 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 10 -150.1799904582 0.1073229564D+00 largest error matrix element: -0.6074394477D-01 norm of error vector: 0.1951933044D+00 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 11 -150.1852486319 0.4026510708D-01 largest error matrix element: -0.2894785211D-01 norm of error vector: 0.7141418678D-01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 12 -150.1868899701 0.2951749512D-01 largest error matrix element: -0.1995270558D-01 norm of error vector: 0.4766604558D-01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 13 -150.1880345597 0.4508403418D-01 largest error matrix element: -0.8419799295D-02 norm of error vector: 0.2317545615D-01 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 14 -150.1882465060 0.2856245475D-01 largest error matrix element: -0.1436355282D-02 norm of error vector: 0.4759352047D-02 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 15 -150.1882553129 0.2608056134D-02 largest error matrix element: -0.6851504565D-03 norm of error vector: 0.2445621530D-02 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 16 -150.1882578881 0.2061806212D-02 largest error matrix element: 0.2214302956D-03 norm of error vector: 0.8030538393D-03 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 17 -150.1882589019 0.1041456167D-02 largest error matrix element: 0.2475374249D-03 norm of error vector: 0.7000271141D-03 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 18 -150.1882593196 0.6741478071D-03 largest error matrix element: -0.6924050886D-04 norm of error vector: 0.2577635758D-03 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 19 -150.1882594428 0.5137348070D-03 largest error matrix element: -0.2376997575D-04 norm of error vector: 0.6962446223D-04 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 20 -150.1882594451 0.3163085483D-04 largest error matrix element: -0.5640835584D-05 norm of error vector: 0.2427336883D-04 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 21 -150.1882594461 0.3426821714D-04 largest error matrix element: 0.4393295932D-05 norm of error vector: 0.1184208265D-04 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 22 -150.1882594463 0.9384047682D-05 largest error matrix element: 0.1565845030D-05 norm of error vector: 0.5372068031D-05 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 23 -150.1882594463 0.6436095391D-05 largest error matrix element: -0.5596786291D-06 norm of error vector: 0.1918261763D-05 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 24 -150.1882594463 0.2620777732D-05 largest error matrix element: 0.1745685798D-06 norm of error vector: 0.5823905419D-06 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 25 -150.1882594463 0.6557939863D-06 largest error matrix element: -0.6174764496D-07 norm of error vector: 0.2102879028D-06 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 26 -150.1882594463 0.2449761247D-06 largest error matrix element: 0.3950233987D-07 norm of error vector: 0.1137007692D-06 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 27 -150.1882594463 0.6669159280D-07 largest error matrix element: -0.9113083554D-08 norm of error vector: 0.4514838286D-07 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 28 -150.1882594463 0.4188707408D-07 largest error matrix element: 0.1118551869D-07 norm of error vector: 0.3943240948D-07 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 29 -150.1882594463 0.3868623860D-07 largest error matrix element: -0.3617674305D-08 norm of error vector: 0.1218777513D-07 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 30 -150.1882594463 0.1776963215D-07 largest error matrix element: -0.1060349933D-08 norm of error vector: 0.4706553301D-08 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 31 -150.1882594463 0.3077001598D-08 largest error matrix element: -0.6610619018D-09 norm of error vector: 0.2784707026D-08 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 32 -150.1882594463 0.2212913568D-08 largest error matrix element: -0.3039098057D-09 norm of error vector: 0.1133330779D-08 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 33 -150.1882594463 0.7705079907D-09 largest error matrix element: -0.2177145783D-09 norm of error vector: 0.6987101982D-09 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 34 -150.1882594463 0.1485405354D-08 largest error matrix element: 0.1406101229D-09 norm of error vector: 0.4961655623D-09 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 35 -150.1882594463 0.3979664376D-09 largest error matrix element: -0.6841764859D-10 norm of error vector: 0.2322420900D-09 current occupation vector 7 2 7 1 processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. 36 -150.1882594463 0.2701139312D-09 largest error matrix element: 0.1389676961D-10 norm of error vector: 0.5682735462D-10 current occupation vector 7 2 7 1 SCF has converged. processed 43766 ao basis integrals from 73 buffers. processed 12703 ao basis integrals from 22 buffers. processed 22231 ao basis integrals from 38 buffers. E(SCF)= -150.1882594463 0.6950334752D-10 Final occupancies: Alpha population by irrep: 7 2 Beta population by irrep: 7 1 Eigenvector printing suppressed. The average multiplicity is 2.0085986 The expectation value of S**2 is 0.7586171 @PUTMOS-I, Writing converged MOs to NEWMOS. @PUTMOS-I, Symmetry 1 Full 6 Partial 0 @PUTMOS-I, Symmetry 2 Full 2 Partial 1 @PRJDEN-I, Analyzing reference function density. Trace of projected alpha density matrix = 1.000000000 Trace of projected beta density matrix = 1.000000000 Alpha part of wavefunction is symmetric. Beta part of wavefunction is symmetric. ORBITAL EIGENVALUES (ALPHA) (1H = 27.2116089 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -20.6746025506 -562.5891984955 A' A' (1) 2 2 -20.6664204330 -562.3665499102 A' A' (1) 3 3 -1.5987109549 -43.5034972272 A' A' (1) 4 4 -1.1983527133 -32.6091053437 A' A' (1) 5 5 -0.7795788114 -21.2135937110 A' A' (1) 6 25 -0.7569621259 -20.5981573115 A'' A'' (2) 7 6 -0.6773623603 -18.4321196231 A' A' (1) 8 26 -0.5113011870 -13.9133279252 A'' A'' (2) 9 7 -0.5088489525 -13.8465986781 A' A' (1) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 10 8 0.1769247366 4.8144067346 A' A' (1) 11 9 0.3822088044 10.4005164978 A' A' (1) 12 10 0.7992647625 21.7492801145 A' A' (1) 13 27 1.0896661678 29.6515695758 A'' A'' (2) 14 11 1.0961210117 29.8272162621 A' A' (1) 15 12 1.1410326335 31.0493337507 A' A' (1) 16 13 1.1544526183 31.4145131263 A' A' (1) 17 28 1.1968734995 32.5688535561 A'' A'' (2) 18 14 1.2588668600 34.2557926345 A' A' (1) 19 29 1.5182130242 41.3130190216 A'' A'' (2) 20 15 1.5270924740 41.5546431366 A' A' (1) 21 16 1.7123805224 46.5966290400 A' A' (1) 22 17 2.0035278775 54.5192169965 A' A' (1) 23 18 2.4137692248 65.6825440878 A' A' (1) 24 30 2.4478690614 66.6104555045 A'' A'' (2) 25 19 2.7155390004 73.8941851952 A' A' (1) 26 31 2.8218764768 76.7877990124 A'' A'' (2) 27 20 2.8508822631 77.5770931249 A' A' (1) 28 21 2.9834342668 81.1840464081 A' A' (1) 29 32 3.2419614434 88.2189868232 A'' A'' (2) 30 33 3.5315083574 96.0980242012 A'' A'' (2) 31 22 3.6460736924 99.2155312893 A' A' (1) 32 23 3.9163413116 106.5699480392 A' A' (1) 33 24 4.2418665986 115.4280148313 A' A' (1) ORBITAL EIGENVALUES ( BETA) (1H = 27.2116089 eV) MO # E(hartree) E(eV) FULLSYM COMPSYM ---- -------------------- -------------------- ------- --------- 1 1 -20.6575690187 -562.1256886866 A' A' (1) 2 2 -20.6344605953 -561.4968713070 A' A' (1) 3 3 -1.5377462498 -41.8445495159 A' A' (1) 4 4 -1.0992407410 -29.9121091178 A' A' (1) 5 5 -0.7586367657 -20.6437269565 A' A' (1) 6 6 -0.6519950792 -17.7418350917 A' A' (1) 7 25 -0.5712797369 -15.5454407648 A'' A'' (2) 8 7 -0.4733478565 -12.8805567392 A' A' (1) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 9 26 0.1439279735 3.9165117236 A'' A'' (2) 10 8 0.1795562765 4.8860151701 A' A' (1) 11 9 0.4186635119 11.3925077402 A' A' (1) 12 10 0.8016749531 21.8148652774 A' A' (1) 13 11 1.1088478091 30.1735328960 A' A' (1) 14 12 1.1516261809 31.3376012180 A' A' (1) 15 13 1.1645102048 31.6881962378 A' A' (1) 16 27 1.1779848837 32.0548639297 A'' A'' (2) 17 14 1.2717955772 34.6076038293 A' A' (1) 18 28 1.3285833432 36.1528903090 A'' A'' (2) 19 29 1.5235239867 41.4575388559 A'' A'' (2) 20 15 1.5374705827 41.8370481702 A' A' (1) 21 16 1.7282920182 47.0296064404 A' A' (1) 22 17 2.0188140420 54.9351781265 A' A' (1) 23 18 2.4213744949 65.8894957222 A' A' (1) 24 30 2.5104212721 68.3126017982 A'' A'' (2) 25 19 2.7245839353 74.1403124264 A' A' (1) 26 31 2.9219920200 79.5121040182 A'' A'' (2) 27 20 2.9732775426 80.9076656007 A' A' (1) 28 21 3.0044006499 81.7545754243 A' A' (1) 29 32 3.2695159108 88.9687882149 A'' A'' (2) 30 33 3.5964579793 97.8654079110 A'' A'' (2) 31 22 3.6561739814 99.4903764031 A' A' (1) 32 23 3.9321148182 106.9991705316 A' A' (1) 33 24 4.2606171615 115.9382478144 A' A' (1) VSCF finished. @CHECKOUT-I, Total execution time : 0.6800 seconds. in runit xvscf 0 GETMEM: Allocated 152 MB of memory in. Full UHF integral transformation Transformation of IIII integrals : 2 passes through the AO integral file were required. 43766 AO integrals were read. 46185 MO integrals (Spin case AAAA) were written to HF2AA. 46185 MO integrals (Spin case BBBB) were written to HF2BB. 92025 MO integrals (Spin case AABB) were written to HF2AB. Transformation of IIJJ integrals : 2 passes through the AO integral file were required. 12703 AO integrals were read. 13500 MO integrals (Spin case AAAA) were written to HF2AA. 13500 MO integrals (Spin case BBBB) were written to HF2BB. 27000 MO integrals (Spin case AABB) were written to HF2AB. Transformation of IJIJ integrals : 2 passes through the AO integral file were required. 22231 AO integrals were read. 23436 MO integrals (Spin case AAAA) were written to HF2AA. 23436 MO integrals (Spin case BBBB) were written to HF2BB. 46656 MO integrals (Spin case AABB) were written to HF2AB. Summary of active molecular orbitals: ------------------------------------------------------------------------ * Spin case alpha * Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -20.6746026 1 18 1.7123805 1 2 -20.6664204 1 19 2.0035279 1 3 -1.5987110 1 20 2.4137692 1 4 -1.1983527 1 21 2.7155390 1 5 -0.7795788 1 22 2.8508823 1 6 -0.6773624 1 23 2.9834343 1 7 -0.5088490 1 24 3.6460737 1 8 -0.7569621 2 25 3.9163413 1 9 -0.5113012 2 26 4.2418666 1 10 0.1769247 1 27 1.0896662 2 11 0.3822088 1 28 1.1968735 2 12 0.7992648 1 29 1.5182130 2 13 1.0961210 1 30 2.4478691 2 14 1.1410326 1 31 2.8218765 2 15 1.1544526 1 32 3.2419614 2 16 1.2588669 1 33 3.5315084 2 17 1.5270925 1 ------------------------------------------------------------------------ ------------------------------------------------------------------------ * Spin case beta * Index Eigenvalue Symmetry Index Eigenvalue Symmetry ------------------------------------------------------------------------ 1 -20.6575690 1 18 2.0188140 1 2 -20.6344606 1 19 2.4213745 1 3 -1.5377462 1 20 2.7245839 1 4 -1.0992407 1 21 2.9732775 1 5 -0.7586368 1 22 3.0044006 1 6 -0.6519951 1 23 3.6561740 1 7 -0.4733479 1 24 3.9321148 1 8 -0.5712797 2 25 4.2606172 1 9 0.1795563 1 26 0.1439280 2 10 0.4186635 1 27 1.1779849 2 11 0.8016750 1 28 1.3285833 2 12 1.1088478 1 29 1.5235240 2 13 1.1516262 1 30 2.5104213 2 14 1.1645102 1 31 2.9219920 2 15 1.2717956 1 32 3.2695159 2 16 1.5374706 1 33 3.5964580 2 17 1.7282920 1 ------------------------------------------------------------------------ @CHECKOUT-I, Total execution time : 0.6600 seconds. in runit xvtran 0 GETMEM: Allocated 152 MB of memory in. Processing integrals for MBPT(2) calculation. @GMOIAA-I, Processing MO integrals for spin case AA. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 23611 PPPH 33950 PPHH 12397 PHPH 7277 PHHH 5285 HHHH 601 TOTAL 83121 @GMOIAA-I, Processing MO integrals for spin case BB. @GMOIAA-I, Generation of integral list completed. TYPE NUMBER ---- -------- PPPP 27271 PPPH 33931 PPHH 10829 PHPH 6433 PHHH 4194 HHHH 463 TOTAL 83121 @GMOIAB-I, Processing MO integrals for spin case AB. TYPE NUMBER ---- -------- PPPP 50393 PPPH1H 36425 PPPH2H 31674 PPHH 22950 PHPH1P 6082 PHPH2P 7763 PHHH1P 4438 PHHH2P 4959 HHHH 997 TOTAL 165681 @FORMT2-I, Second-order MBPT correlation energies: ---------------------------------------------- E(SCF) = -150.188259446319 a.u. E2(AA) = -0.047949181891 a.u. E2(BB) = -0.043695510213 a.u. E2(AB) = -0.253402524145 a.u. E2(TOT) = -0.345047216248 a.u. Total MBPT(2) energy = -150.533306662567 a.u. ---------------------------------------------- ---------------------------------------------- Projected spin multiplicities: ---------------------------------------------- <0|S^2|0> = 0.7586170616. <0|S^2 T2|0> = -0.0038358711. Projected <0|S^2 exp(T)|0> = 0.7547811905. Approximate spin mult. = 2.0047754892. ---------------------------------------------- Largest T2 amplitudes for spin case AA: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 9 6 27 11]-0.02015 [ 7 6 14 11] 0.01655 [ 9 6 27 13] 0.01387 [ 9 6 30 11]-0.01334 [ 7 6 14 13]-0.01191 [ 8 6 27 14]-0.01176 [ 9 7 27 14] 0.01166 [ 8 6 28 11]-0.01151 [ 8 7 31 22] 0.01128 [ 9 6 28 14]-0.01089 [ 9 5 27 11] 0.01086 [ 8 7 27 16] 0.01084 [ 9 7 28 16] 0.01074 [ 7 6 16 14] 0.01044 [ 9 3 27 11]-0.01043 ----------------------------------------------------------------------------- Norm of T2AA vector ( 5120 symmetry allowed elements): 0.1056995084. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case BB: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 8 6 26 10] 0.04060 [ 8 6 26 12]-0.01869 [ 8 7 26 14] 0.01698 [ 7 6 14 10]-0.01649 [ 8 5 26 10] 0.01633 [ 7 6 14 12] 0.01476 [ 8 7 26 12]-0.01409 [ 8 3 26 10]-0.01338 [ 8 4 26 10]-0.01220 [ 8 5 27 11] 0.01170 [ 8 6 27 12]-0.01165 [ 8 6 27 10] 0.01122 [ 8 6 26 14]-0.01022 [ 8 4 26 16]-0.01018 [ 8 4 26 9] 0.00999 ----------------------------------------------------------------------------- Norm of T2BB vector ( 4396 symmetry allowed elements): 0.1105426231. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 6 6 11 10] 0.04912 [ 6 8 11 26]-0.04318 [ 9 8 27 26]-0.02833 [ 9 8 28 27]-0.02697 [ 5 5 12 11]-0.02355 [ 5 8 11 26] 0.02207 [ 6 6 11 12]-0.02078 [ 5 5 11 10]-0.02074 [ 3 3 11 10]-0.02067 [ 6 8 13 26] 0.01999 [ 9 6 27 10] 0.01980 [ 8 8 27 27]-0.01962 [ 4 4 11 10]-0.01953 [ 5 6 11 10]-0.01943 [ 6 6 13 12] 0.01910 ----------------------------------------------------------------------------- Norm of T2AB vector ( 22950 symmetry allowed elements): 0.2520760495. ----------------------------------------------------------------------------- @CHECKOUT-I, Total execution time : 0.1000 seconds. in runit xintprc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) energy will be calculated. Correlation energies computed from initial T amplitudes: Initial T amplitudes: Largest T2 amplitudes for spin case AA: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 9 6 27 11]-0.02015 [ 7 6 14 11] 0.01655 [ 9 6 27 13] 0.01387 [ 9 6 30 11]-0.01334 [ 7 6 14 13]-0.01191 [ 8 6 27 14]-0.01176 [ 9 7 27 14] 0.01166 [ 8 6 28 11]-0.01151 [ 8 7 31 22] 0.01128 [ 9 6 28 14]-0.01089 [ 9 5 27 11] 0.01086 [ 8 7 27 16] 0.01084 [ 9 7 28 16] 0.01074 [ 7 6 16 14] 0.01044 [ 9 3 27 11]-0.01043 ----------------------------------------------------------------------------- Norm of T2AA vector ( 5120 symmetry allowed elements): 0.1056995084. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case BB: i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 8 6 26 10] 0.04060 [ 8 6 26 12]-0.01869 [ 8 7 26 14] 0.01698 [ 7 6 14 10]-0.01649 [ 8 5 26 10] 0.01633 [ 7 6 14 12] 0.01476 [ 8 7 26 12]-0.01409 [ 8 3 26 10]-0.01338 [ 8 4 26 10]-0.01220 [ 8 5 27 11] 0.01170 [ 8 6 27 12]-0.01165 [ 8 6 27 10] 0.01122 [ 8 6 26 14]-0.01022 [ 8 4 26 16]-0.01018 [ 8 4 26 9] 0.00999 ----------------------------------------------------------------------------- Norm of T2BB vector ( 4396 symmetry allowed elements): 0.1105426231. ----------------------------------------------------------------------------- Largest T2 amplitudes for spin case AB: _ _ _ _ _ _ i j a b i j a b i j a b ----------------------------------------------------------------------------- [ 6 6 11 10] 0.04912 [ 6 8 11 26]-0.04318 [ 9 8 27 26]-0.02833 [ 9 8 28 27]-0.02697 [ 5 5 12 11]-0.02355 [ 5 8 11 26] 0.02207 [ 6 6 11 12]-0.02078 [ 5 5 11 10]-0.02074 [ 3 3 11 10]-0.02067 [ 6 8 13 26] 0.01999 [ 9 6 27 10] 0.01980 [ 8 8 27 27]-0.01962 [ 4 4 11 10]-0.01953 [ 5 6 11 10]-0.01943 [ 6 6 13 12] 0.01910 ----------------------------------------------------------------------------- Norm of T2AB vector ( 22950 symmetry allowed elements): 0.2520760495. ----------------------------------------------------------------------------- The AA contribution to the correlation energy is: -0.0479492 a.u. The BB contribution to the correlation energy is: -0.0436955 a.u. The AB contribution to the correlation energy is: -0.2534025 a.u. The total correlation energy is -0.345047216248 a.u. ----------------------------------------------------------- Correction Increment Cumulative ----------------------------------------------------------- D-MBPT(2) -0.345047216248 -150.533306662567 ----------------------------------------------------------- Total MBPT(2) energy: -150.533306662567 a.u. @CHECKOUT-I, Total execution time : 0.0000 seconds. in runit xvcc 0 GETMEM: Allocated 152 MB of memory in. in runit xlambda 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) density and intermediates are calculated. The iterative expansion of D(ai) converged after 17 iterations. ---------------------------------------------------------------------- Natural orbital occupation numbers ---------------------------------------------------------------------- Alpha spin ---------------------------------------------------------------------- 0.99996 0.99996 0.99539 0.99244 0.99183 0.98977 0.98645 0.98438 0.97707 0.01980 0.01092 0.00901 0.00743 0.00545 0.00519 0.00356 0.00278 0.00256 0.00250 0.00214 0.00213 0.00200 0.00190 0.00116 0.00104 0.00103 0.00101 0.00036 0.00025 0.00023 0.00018 0.00010 0.00002 Trace of density matrix : 9.0000000000. ---------------------------------------------------------------------- Beta spin ---------------------------------------------------------------------- 1.00720 0.99996 0.99996 0.99409 0.99088 0.98941 0.98446 0.97602 0.02030 0.01081 0.00788 0.00778 0.00533 0.00390 0.00295 0.00263 0.00210 0.00203 0.00186 0.00131 0.00106 0.00104 0.00097 0.00075 0.00053 0.00049 0.00036 0.00025 0.00022 0.00017 0.00010 0.00001 -.01681 Trace of density matrix : 8.0000000000. ---------------------------------------------------------------------- Density calculation successfully completed. @CHECKOUT-I, Total execution time : 0.0300 seconds. in runit xdens 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Evaluation of 1e integral derivatives required 0.04 seconds. Evaluation of 2e integral derivatives required 0.68 seconds. cpu in psphcrt 0.00000000000000D+000 cpu in intexp 0.00000000000000D+000 cpu in dfock 0.259999994188547 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.7200 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Coupled-perturbed HF (CPHF) equations are solved for UHF-CC/MBPT hessian and dipole derivatives. There are 8 perturbations within irrep 1. CPHF converged after 18 iterations. There are 4 perturbations within irrep 2. CPHF converged after 16 iterations. SCF static dipole polarizability -------------------------------- Ex Ey Ez Ex 12.234427 -1.032130 0.000000 Ey -1.032130 5.699072 0.000000 Ez 0.000000 0.000000 4.062828 SCF static dipole hyperpolarizability ------------------------------------- Ex Ey Ez xx 23.710814 4.739234 0.000000 xy 4.739234 -9.169415 0.000000 xz 0.000000 0.000000 -2.609229 yy -9.169415 14.712804 0.000000 yz 0.000000 0.000000 2.251671 zz -2.609229 2.251671 0.000000 @CHECKOUT-I, Total execution time : 0.1200 seconds. in runit xcphf 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 3 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 53164 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 123185 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 53164 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 228725 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 13335 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 42093 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 13335 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 31025 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 23655 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 53692 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 23655 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 35192 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 3) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 3) The first-order density matrix is being calculated (Symmetry block 1, perturbation 3) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 17 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 1, perturbation 3) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0651404775 -0.0161566111 0.0730442605 0.0068820794 -0.0079037830 0.0092745317 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.2145009294 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0152820652 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 0.5300 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.1300 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x -0.0097328754 O #1 y -0.0019456425 O #2 x 0.0096176719 O #2 y 0.0004104485 H #3 x 0.0001152035 H #3 y 0.0015351940 O #1 -0.0097328754 -0.0019456425 0.0000000000 O #2 0.0096176719 0.0004104485 0.0000000000 H #3 0.0001152035 0.0015351940 0.0000000000 Evaluation of 2e integral derivatives required -2.49 seconds. contribution to Hessian -0.0097328754 -0.0019456425 0.0096176719 0.0004104485 0.0001152035 0.0015351940 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 1.00000053644180D-002 cpu in intexp 0.00000000000000D+000 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.4500 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 4 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 53164 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 123185 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 53164 AO integral derivatives were read from file DIIII. Transformation of first index required 0.1 seconds. Transformation of remaining indices required 0.1 seconds. 228725 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 13334 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 42093 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 13334 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 31025 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 23654 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 53692 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 23654 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 35192 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 4) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 4) The first-order density matrix is being calculated (Symmetry block 1, perturbation 4) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 18 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 1, perturbation 4) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0004104688 -0.0040824049 0.0047624488 0.0063743400 -0.0051729176 -0.0022919351 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0186278583 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0211328940 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 0.5600 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.1200 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0008073292 O #1 y 0.0065101771 O #2 x -0.0004865009 O #2 y -0.0060969280 H #3 x -0.0003208283 H #3 y -0.0004132492 O #1 0.0008073292 0.0065101771 0.0000000000 O #2 -0.0004865009 -0.0060969280 0.0000000000 H #3 -0.0003208283 -0.0004132492 0.0000000000 Evaluation of 2e integral derivatives required -2.49 seconds. contribution to Hessian 0.0008073292 0.0065101771 -0.0004865009 -0.0060969280 -0.0003208283 -0.0004132492 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 3.00000086426735D-002 cpu in intexp 1.99999958276749D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.4500 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 5 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 29958 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 123185 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 29958 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 228725 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 6677 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 42093 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 6677 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 31025 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 11909 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 53692 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 11909 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 35192 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 5) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 5) The first-order density matrix is being calculated (Symmetry block 1, perturbation 5) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 18 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 1, perturbation 5) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0122955929 -0.0127049347 -0.0057155049 -0.0021689003 -0.0065800880 0.0148738351 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0036846170 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0214544309 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 0.5000 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.1300 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0018838382 O #1 y 0.0046622699 O #2 x -0.0008151240 O #2 y -0.0015556796 H #3 x -0.0010687142 H #3 y -0.0031065903 O #1 0.0018838382 0.0046622699 0.0000000000 O #2 -0.0008151240 -0.0015556796 0.0000000000 H #3 -0.0010687142 -0.0031065903 0.0000000000 Evaluation of 2e integral derivatives required -2.49 seconds. contribution to Hessian 0.0018838382 0.0046622699 -0.0008151240 -0.0015556796 -0.0010687142 -0.0031065903 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 1.99999958276749D-002 cpu in intexp 2.00000256299973D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 1.99999809265137D-002 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.4500 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 6 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIII integral derivatives. 1 pass through the AO integral derivative file was needed. 29958 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 123185 MO integral derivatives were written to file DERINT. 2 passes through the AO integral derivative file were needed. 29958 AO integral derivatives were read from file DIIII. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 228725 MO integral derivatives were written to file DERINT. Transformation of DIIJJ integral derivatives. 1 pass through the AO integral derivative file was needed. 6677 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 42093 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 6677 AO integral derivatives were read from file DIIJJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 31025 MO integral derivatives were written to file DERINT. Transformation of DIJIJ integral derivatives. 1 pass through the AO integral derivative file was needed. 11908 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 53692 MO integral derivatives were written to file DERINT. 1 pass through the AO integral derivative file was needed. 11908 AO integral derivatives were read from file DIJIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 35192 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 1, perturbation 6) First derivative of the wavefunction is calculated (Symmetry block 1, perturbation 6) The first-order density matrix is being calculated (Symmetry block 1, perturbation 6) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 17 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 1, perturbation 6) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0378021293 0.0428157008 0.0212441601 -0.0068886214 0.0165579692 -0.0359270794 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0397619889 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0356721166 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 @CHECKOUT-I, Total execution time : 0.5100 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0600 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.1300 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.01 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0001465338 O #1 y -0.0049476734 O #2 x 0.0016837578 O #2 y 0.0011762764 H #3 x -0.0018302917 H #3 y 0.0037713971 O #1 0.0001465338 -0.0049476734 0.0000000000 O #2 0.0016837578 0.0011762764 0.0000000000 H #3 -0.0018302917 0.0037713971 0.0000000000 Evaluation of 2e integral derivatives required -2.50 seconds. contribution to Hessian 0.0001465338 -0.0049476734 0.0016837578 0.0011762764 -0.0018302917 0.0037713971 0.0000000000 0.0000000000 0.0000000000 cpu in psphcrt 0.00000000000000D+000 cpu in intexp 3.00000160932541D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 2.00000107288361D-002 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.4400 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 8 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 79195 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 199898 MO integral derivatives were written to file DERINT. 3 passes through the AO integral derivative file were needed. 79195 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 152300 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 2) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 2) The first-order density matrix is being calculated (Symmetry block 2, perturbation 2) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 2, perturbation 2) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0155134256 -0.0157756124 0.0002621869 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0110183874 0.0000000000 @CHECKOUT-I, Total execution time : 0.4700 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0400 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0700 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #2 x 0.0000000000 O #2 y 0.0000000000 H #3 x 0.0000000000 H #3 y 0.0000000000 O #1 0.0000000000 0.0000000000 0.0049550466 O #2 0.0000000000 0.0000000000 -0.0068425786 H #3 0.0000000000 0.0000000000 0.0018875320 Evaluation of 2e integral derivatives required -2.49 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0049550466 -0.0068425786 0.0018875320 cpu in psphcrt 2.00000107288361D-002 cpu in intexp 9.99999046325684D-003 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 9.99999046325684D-003 @CHECKOUT-I, Total execution time : 0.4500 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. Vibrational frequencies and infrared intensities are calculated at the MBPT(2) level within the harmonic approximation. AO based algorithm is used. 9 0 CPHF coeficients for occ-occ block: U^x(i,j) = -1/2 S^x(i,j) CPHF coeficients for vrt-vrt block: U^x(a,b) = -1/2 S^x(a,b) Transformation of derivative integrals from AO to MO basis: UHF transformation Transformation of DIIIJ integral derivatives. 3 passes through the AO integral derivative file were needed. 41753 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.1 seconds. 199898 MO integral derivatives were written to file DERINT. 3 passes through the AO integral derivative file were needed. 41753 AO integral derivatives were read from file DIIIJ. Transformation of first index required 0.0 seconds. Transformation of remaining indices required 0.0 seconds. 152300 MO integral derivatives were written to file DERINT. Formation of ^chi using AO integrals: Transformation of IIII integrals: 2 passes through the AO integral file were needed. 43766 AO integrals were read from file IIII. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IIJJ integrals: 2 passes through the AO integral file were needed. 12703 AO integrals were read from file IIJJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. Transformation of IJIJ integrals: 2 passes through the AO integral file were needed. 22231 AO integrals were read from file IJIJ. Tranformation of first (perturbed) index required 0.0 seconds. Tranformation of remaining (unperturbed) indices required 0.0 seconds. MO basis integral derivatives are being calculated (Symmetry block 2, perturbation 3) First derivative of the wavefunction is calculated (Symmetry block 2, perturbation 3) The first-order density matrix is being calculated (Symmetry block 2, perturbation 3) Calculation of the contributions of to dI(i,j)/dx required 0.0 seconds. Calculation of the contributions of to dI(a,b)/dx required 0.0 seconds. Calculation of the contributions of to dI(i,a)/dx required 0.0 seconds. First-order Z-vector equations are solved for 1 perturbation. Convergence reached after 15 iterations. U*G(pq,rs) contribution is being calculated for MBPT(2) (Symmetry block 2, perturbation 3) MBPT(2) contribution to force constants 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0050859220 0.0018171629 -0.0069030849 MBPT(2) contribution to dipole derivatives 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0062372806 @CHECKOUT-I, Total execution time : 0.4200 seconds. in runit xsdcc 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be sorted to Mulliken order. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO derivative gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0700 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.02 seconds. Two-electron integral gradient ------------------------------ O #1 x 0.0000000000 O #1 y 0.0000000000 O #2 x 0.0000000000 O #2 y 0.0000000000 H #3 x 0.0000000000 H #3 y 0.0000000000 O #1 0.0000000000 0.0000000000 -0.0001881607 O #2 0.0000000000 0.0000000000 0.0015508925 H #3 0.0000000000 0.0000000000 -0.0013627319 Evaluation of 2e integral derivatives required -2.49 seconds. contribution to Hessian 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.0001881607 0.0015508925 -0.0013627319 cpu in psphcrt 1.99999883770943D-002 cpu in intexp 1.99999958276749D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 0.4500 seconds. in runit xvdint 0 GETMEM: Allocated 152 MB of memory in. in runit xanti 0 GETMEM: Allocated 152 MB of memory in. MBPT(2) MO gammas will be transformed to the AO basis. @CHECKOUT-I, Total execution time : 0.0500 seconds. in runit xbcktrn 0 GETMEM: Allocated 152 MB of memory in. One- and two-electron integral derivatives are calculated for UHF-CC/MBPT hessians and dipole derivatives. Spherical gaussians are used. 3 types of atoms 1 symmetry operations Reflection in the XY-plane Integrals less than 1.00D-14 are neglected Atomic type number 1 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 2 -------------------- Nuclear charge: 8 Number of symmetry independent atoms: 1 Highest orbital type: d 1 CGTO's of s type 1 CGTO's of p type 1 CGTO's of d type Atomic type number 3 -------------------- Nuclear charge: 1 Number of symmetry independent atoms: 1 Highest orbital type: p 1 CGTO's of s type 1 CGTO's of p type Symmetry-adapted nuclear coordinates ------------------------------------ 0 1 O #1 x 1 0 O #1 y 2 0 O #1 z 0 7 O #2 x 3 0 O #2 y 4 0 O #2 z 0 8 H #3 x 5 0 H #3 y 6 0 H #3 z 0 9 Cartesian Coordinates --------------------- Total number of coordinates: 9 1 O #1 x 1.1654071106 2 y 0.1235146118 3 z 0.0000000000 4 O #2 x -1.2750541526 5 y -0.0235446599 6 z 0.0000000000 7 H #3 x 1.7401781214 8 y -1.5865956804 9 z 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 6 3 Symmetry 1 1 O #1 x 1 2 O #1 y 2 3 O #2 x 4 4 O #2 y 5 5 H #3 x 7 6 H #3 y 8 Symmetry 2 7 O #1 z 3 8 O #2 z 6 9 H #3 z 9 Symmmetry Orbitals ------------------ Number of orbitals in each symmetry: 26 9 Symmetry 1 1 O #1 s 1 2 O #1 s 2 3 O #1 s 3 4 O #1 x 4 5 O #1 x 5 6 O #1 y 6 7 O #1 y 7 8 O #1 xx 10 9 O #1 xy 11 10 O #1 yy 13 11 O #1 zz 15 12 O #2 s 16 13 O #2 s 17 14 O #2 s 18 15 O #2 x 19 16 O #2 x 20 17 O #2 y 21 18 O #2 y 22 19 O #2 xx 25 20 O #2 xy 26 21 O #2 yy 28 22 O #2 zz 30 23 H #3 s 31 24 H #3 s 32 25 H #3 x 33 26 H #3 y 34 Symmetry 2 27 O #1 z 8 28 O #1 z 9 29 O #1 xz 12 30 O #1 yz 14 31 O #2 z 23 32 O #2 z 24 33 O #2 xz 27 34 O #2 yz 29 35 H #3 z 35 Translational redundant coordinates are : ----------------------------------------- perturbation 1 in 1 (x-translation) perturbation number: 1 perturbation 2 in 1 (y-translation) perturbation number: 2 perturbation 1 in 2 (z-translation) perturbation number: 7 relation for x-direction : 1 = - ( 3 5 ) relation for y-direction : 2 = - ( 4 6 ) relation for z-direction : 1 = - ( 2 3 ) 6 3 Translational invariance is used. Nuclear repulsion gradient -------------------------- O #1 x -9.9044191841 O #1 y -2.9738207242 O #2 x 11.3032124075 O #2 y 0.3248232145 H #3 x -1.3987932234 H #3 y 2.6489975097 O #1 -9.9044191841 -2.9738207242 0.0000000000 O #2 11.3032124075 0.3248232145 0.0000000000 H #3 -1.3987932234 2.6489975097 0.0000000000 Kinetic energy integral gradient -------------------------------- O #1 x -0.3554890723 O #1 y -0.7190923478 O #2 x 0.5920533930 O #2 y 0.0187008519 H #3 x -0.2365643207 H #3 y 0.7003914959 O #1 -0.3554890723 -0.7190923478 0.0000000000 O #2 0.5920533930 0.0187008519 0.0000000000 H #3 -0.2365643207 0.7003914959 0.0000000000 Nuclear attraction integral gradient ------------------------------------ O #1 x 19.3235917729 O #1 y 8.2195980527 O #2 x -22.5400877210 O #2 y -0.7607559077 H #3 x 3.2164959482 H #3 y -7.4588421450 O #1 19.3235917729 8.2195980527 0.0000000000 O #2 -22.5400877210 -0.7607559077 0.0000000000 H #3 3.2164959482 -7.4588421450 0.0000000000 Reorthonormalization gradient ----------------------------- O #1 x -0.3056258221 O #1 y -0.4067545872 O #2 x 0.4128157343 O #2 y 0.0308572276 H #3 x -0.1071899122 H #3 y 0.3758973596 O #1 -0.3056258221 -0.4067545872 0.0000000000 O #2 0.4128157343 0.0308572276 0.0000000000 H #3 -0.1071899122 0.3758973596 0.0000000000 Kinetic energy integral Hessian ------------------------------- Symmetry 1 O #1 x O #1 y O #2 x O #2 y H #3 x H #3 y O #1 x 0.903620 O #1 y -0.281508 -0.116229 O #2 x -1.450812 -0.076859 1.412948 O #2 y -0.076859 0.396282 0.092681 -0.391228 H #3 x 0.547192 0.358368 0.037864 -0.015821 -0.585056 H #3 y 0.358368 -0.280052 -0.015821 -0.005054 -0.342546 0.285107 Symmetry 2 O #1 z O #2 z H #3 z O #1 z -1.201587 O #2 z 0.490890 -0.481823 H #3 z 0.710696 -0.009067 -0.701629 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x 0.903620 O #1 y -0.281508 -0.116229 O #1 z 0.000000 0.000000 -1.201587 O #2 x -1.450812 -0.076859 0.000000 1.412948 O #2 y -0.076859 0.396282 0.000000 0.092681 -0.391228 O #2 z 0.000000 0.000000 0.490890 0.000000 0.000000 -0.481823 H #3 x 0.547192 0.358368 0.000000 0.037864 -0.015821 0.000000 H #3 y 0.358368 -0.280052 0.000000 -0.015821 -0.005054 0.000000 H #3 z 0.000000 0.000000 0.710696 0.000000 0.000000 -0.009067 H #3 x H #3 y H #3 z H #3 x -0.585056 H #3 y -0.342546 0.285107 H #3 z 0.000000 0.000000 -0.701629 Nuclear attraction integral Hessian ----------------------------------- Symmetry 1 O #1 x O #1 y O #2 x O #2 y H #3 x H #3 y O #1 x -10.950095 O #1 y 0.941425 10.155268 O #2 x 16.669966 1.738015 -16.823441 O #2 y 1.774168 -10.776428 -1.337939 10.509244 H #3 x -5.719871 -2.679441 0.153475 -0.436229 5.566396 H #3 y -2.715593 0.621160 -0.400076 0.267185 3.115670 -0.888345 Symmetry 2 O #1 z O #2 z H #3 z O #1 z 19.108339 O #2 z -12.229275 12.394388 H #3 z -6.879064 -0.165113 7.044177 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -10.950095 O #1 y 0.941425 10.155268 O #1 z 0.000000 0.000000 19.108339 O #2 x 16.669966 1.738015 0.000000 -16.823441 O #2 y 1.774168 -10.776428 0.000000 -1.337939 10.509244 O #2 z 0.000000 0.000000 -12.229275 0.000000 0.000000 12.394388 H #3 x -5.719871 -2.679441 0.000000 0.153475 -0.436229 0.000000 H #3 y -2.715593 0.621160 0.000000 -0.400076 0.267185 0.000000 H #3 z 0.000000 0.000000 -6.879064 0.000000 0.000000 -0.165113 H #3 x H #3 y H #3 z H #3 x 5.566396 H #3 y 3.115670 -0.888345 H #3 z 0.000000 0.000000 7.044177 Highest order reorthonormalization Hessian ------------------------------------------ Symmetry 1 O #1 x O #1 y O #2 x O #2 y H #3 x H #3 y O #1 x -0.204981 O #1 y -0.048543 -0.590070 O #2 x -0.186826 -0.034937 0.180519 O #2 y -0.034937 0.414594 0.042247 -0.409278 H #3 x 0.391807 0.083480 0.006307 -0.007309 -0.398114 H #3 y 0.083480 0.175476 -0.007309 -0.005316 -0.076171 -0.170160 Symmetry 2 O #1 z O #2 z H #3 z O #1 z -0.901721 O #2 z 0.471747 -0.463280 H #3 z 0.429974 -0.008467 -0.421506 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x -0.204981 O #1 y -0.048543 -0.590070 O #1 z 0.000000 0.000000 -0.901721 O #2 x -0.186826 -0.034937 0.000000 0.180519 O #2 y -0.034937 0.414594 0.000000 0.042247 -0.409278 O #2 z 0.000000 0.000000 0.471747 0.000000 0.000000 -0.463280 H #3 x 0.391807 0.083480 0.000000 0.006307 -0.007309 0.000000 H #3 y 0.083480 0.175476 0.000000 -0.007309 -0.005316 0.000000 H #3 z 0.000000 0.000000 0.429974 0.000000 0.000000 -0.008467 H #3 x H #3 y H #3 z H #3 x -0.398114 H #3 y -0.076171 -0.170160 H #3 z 0.000000 0.000000 -0.421506 Electronic contributions to dipole moment ----------------------------------------- au Debye x -0.29140428 -0.74068266 y 0.12936872 0.32882553 Conversion factor used: 1 Debye = 2.54177000 a.u. Electronic contributions to static part of dipole moment derivatives -------------------------------------------------------------------- Total dipole moment derivatives ------------------------------- Symmetry 1 Ex Ey O #1 x -8.17504424 0.13806435 O #1 y 0.50390931 -8.47017449 O #2 x -8.16981700 -0.05037171 O #2 y -0.03672466 -8.12939868 H #3 x -0.65513877 -0.08769264 H #3 y -0.46718464 -0.40042683 Symmetry 2 Ez O #1 z -8.02915201 O #2 z -8.16161725 H #3 z -0.80923074 Ex Ey Ez O #1 x -8.175044 0.138064 0.000000 O #1 y 0.503909 -8.470174 0.000000 O #1 z 0.000000 0.000000 -8.029152 O #2 x -8.169817 -0.050372 0.000000 O #2 y -0.036725 -8.129399 0.000000 O #2 z 0.000000 0.000000 -8.161617 H #3 x -0.655139 -0.087693 0.000000 H #3 y -0.467185 -0.400427 0.000000 H #3 z 0.000000 0.000000 -0.809231 Evaluation of 1e integral derivatives required 0.08 seconds. Sort of Gammas required for CC/MBPT gradients. Sort performed in core. Sort of Gammas required 0.01 seconds. Two-electron integral gradient ------------------------------ O #1 x -8.7584662184 O #1 y -4.1195199951 O #2 x 10.2316947086 O #2 y 0.3851745176 H #3 x -1.4732284902 H #3 y 3.7343454774 O #1 -8.7584662184 -4.1195199951 0.0000000000 O #2 10.2316947086 0.3851745176 0.0000000000 H #3 -1.4732284902 3.7343454774 0.0000000000 Two-electron integral Hessian ----------------------------- Symmetry 1 O #1 x O #1 y O #2 x O #2 y H #3 x H #3 y O #1 x 2.044951 O #1 y -0.216954 -7.326039 O #2 x -5.859616 -0.884450 5.805202 O #2 y -0.779780 5.781453 0.640289 -5.526853 H #3 x 3.814665 1.101404 0.054415 0.139492 -3.869080 H #3 y 0.996734 1.544586 0.244162 -0.254599 -1.240896 -1.289987 Symmetry 2 O #1 z O #2 z H #3 z O #1 z -11.322286 O #2 z 6.936082 -6.931001 H #3 z 4.386204 -0.005081 -4.381123 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x 2.044951 O #1 y -0.216954 -7.326039 O #1 z 0.000000 0.000000 -11.322286 O #2 x -5.859616 -0.884450 0.000000 5.805202 O #2 y -0.779780 5.781453 0.000000 0.640289 -5.526853 O #2 z 0.000000 0.000000 6.936082 0.000000 0.000000 -6.931001 H #3 x 3.814665 1.101404 0.000000 0.054415 0.139492 0.000000 H #3 y 0.996734 1.544586 0.000000 0.244162 -0.254599 0.000000 H #3 z 0.000000 0.000000 4.386204 0.000000 0.000000 -0.005081 H #3 x H #3 y H #3 z H #3 x -3.869080 H #3 y -1.240896 -1.289987 H #3 z 0.000000 0.000000 -4.381123 Evaluation of 2e integral derivatives required 1.11 seconds. Molecular gradient ------------------ O #1 x -0.0004085241 O #1 y 0.0004103983 O #2 x -0.0003114776 O #2 y -0.0012000961 H #3 x 0.0007200016 H #3 y 0.0007896977 O #1 -0.0004085241 0.0004103983 0.0000000000 O #2 -0.0003114776 -0.0012000961 0.0000000000 H #3 0.0007200016 0.0007896977 0.0000000000 Molecular gradient norm 0.174E-02 Molecular hessian ----------------- Symmetry 1 O #1 x O #1 y O #2 x O #2 y H #3 x H #3 y O #1 x 0.562078 O #1 y -0.074926 0.580925 O #2 x -0.499649 0.009692 0.560987 O #2 y -0.045357 -0.067293 -0.007224 0.042978 H #3 x -0.062429 0.075527 -0.060079 0.054351 0.122508 H #3 y 0.120283 -0.513632 0.006634 0.021308 -0.126918 0.492323 Symmetry 2 O #1 z O #2 z H #3 z O #1 z -0.029802 O #2 z 0.013676 -0.009815 H #3 z 0.016126 -0.002643 -0.013483 O #1 x O #1 y O #1 z O #2 x O #2 y O #2 z O #1 x 0.562078 O #1 y -0.074926 0.580925 O #1 z 0.000000 0.000000 -0.029802 O #2 x -0.499649 0.009692 0.000000 0.560987 O #2 y -0.045357 -0.067293 0.000000 -0.007224 0.042978 O #2 z 0.000000 0.000000 0.013676 0.000000 0.000000 -0.009815 H #3 x -0.062429 0.075527 0.000000 -0.060079 0.054351 0.000000 H #3 y 0.120283 -0.513632 0.000000 0.006634 0.021308 0.000000 H #3 z 0.000000 0.000000 0.016126 0.000000 0.000000 -0.002643 H #3 x H #3 y H #3 z H #3 x 0.122508 H #3 y -0.126918 0.492323 H #3 z 0.000000 0.000000 -0.013483 Total dipole moment ------------------- au Debye x 0.57159750 1.45286939 y -0.65746734 -1.67113077 Conversion factor used: 1 Debye = 2.54177000 a.u. Total dipole moment derivatives ------------------------------- Symmetry 1 Ex Ey O #1 x -0.88042854 -0.05317425 O #1 y 0.08150833 0.00246624 O #2 x 0.61859644 0.06497938 O #2 y -0.05491579 -0.19356628 H #3 x 0.26183210 -0.01180514 H #3 y -0.02659254 0.19110004 Symmetry 2 Ez O #1 z -0.25575035 O #2 z -0.14081821 H #3 z 0.39656856 Ex Ey Ez O #1 x -0.880429 -0.053174 0.000000 O #1 y 0.081508 0.002466 0.000000 O #1 z 0.000000 0.000000 -0.255750 O #2 x 0.618596 0.064979 0.000000 O #2 y -0.054916 -0.193566 0.000000 O #2 z 0.000000 0.000000 -0.140818 H #3 x 0.261832 -0.011805 0.000000 H #3 y -0.026593 0.191100 0.000000 H #3 z 0.000000 0.000000 0.396569 Molecular gradient does not satisfy rotational invariance condition. rotational invariance in yz-plane : 0.0000E+00 rotational invariance in xz-plane : 0.0000E+00 rotational invariance in xy-plane : -.4568E-02 cpu in psphcrt 1.99999809265137D-002 cpu in intexp 4.99999523162842D-002 cpu in dfock 0.00000000000000D+000 cpu in drsym2 0.00000000000000D+000 cpu in dplunk 0.00000000000000D+000 @CHECKOUT-I, Total execution time : 1.1900 seconds. in runit xvdint 0 Used masses (in AMU) in vibrational analysis: 15.994914630 15.994914630 1.007825035 Normal Coordinate Analysis ---------------------------------------------------------------- Irreducible Harmonic Infrared Type Representation Frequency Intensity ---------------------------------------------------------------- (cm-1) (km/mol) ---------------------------------------------------------------- ---- 623.1824i 150.4689 ROTATION ---- 177.8384i 6.8441 ROTATION ---- 102.8034i 0.0086 TRANSLATION ---- 31.7248 0.0060 TRANSLATION ---- 52.4800 5.1083 TRANSLATION ---- 140.4933 8.2963 ROTATION A' 1309.8082 84.3265 VIBRATION A' 1566.8814 34.4826 VIBRATION A' 3850.1942 44.1053 VIBRATION ---------------------------------------------------------------- Normal Coordinates A' A' A' 1309.81 1566.88 3850.19 VIBRATION VIBRATION VIBRATION X Y Z X Y Z X Y Z O 0.712 0.0764 0.0000 0.0059 -0.2099 0.0000 0.0628 -0.2370 0.0000 O -0.678-0.0676 0.0000 -0.2355 0.1601 0.0000 0.0068 0.0035 0.0000 H -0.135-0.0640 0.0000 0.9091 0.2199 0.0000 -0.2786 0.9286 0.0000 Gradient vector in normal coordinate representation ---------------------------------------------------------- i W(I) dE/dQ(i) dE/dq dE/dq [dE/dQ(i)]/w(i) (cm-1) (eV) (relative) ---------------------------------------------------------- 7 1309.81 -0.0001392360 -9.265 -0.001149 0.0000000002 8 1566.88 0.0007731524 47.037 0.005832 0.0000000062 9 3850.19 0.0004982917 19.339 0.002398 0.0000000011 ---------------------------------------------------------- Normal modes in internal coordinates --------------------------------------------------------------------------- 623.182 177.838 102.803 31.725 52.480 --------------------------------------------------------------------------- R1 0.000000 0.000000 -0.001121 0.000000 -0.000313 R2 0.000000 0.000000 0.000304 0.000000 -0.002417 A 0.000000 0.000000 0.002689 0.000000 0.000146 --------------------------------------------------------------------------- 140.493 1309.808 1566.881 3850.194 --------------------------------------------------------------------------- R1 0.002171 0.882223 0.096686 0.010081 R2 0.002427 -0.053318 0.054160 -0.999005 A -0.002683 -0.467803 0.993840 0.043448 --------------------------------------------------------------------------- ---------------------------------------------------------------- Dipole Moment Function (Normal Coordinate Basis) ---------------------------------------------------------------- Mode Symmetry d(Mu(x))/dQ d(Mu(y))/dQ d(Mu(z))/dQ ---------------------------------------------------------------- Q7 A' -0.292796 -0.027770 0.000000 Q8 A' 0.187071 0.019389 0.000000 Q9 A' -0.114909 0.178992 0.000000 ---------------------------------------------------------------- --------------------------------------------------------------------------- Quartic centrifugal distortion parameters CM-1 MHz --------------------------------------------------------------------------- 1 1 1 1 -0.1578673161E-01 -473.2743073222 1 1 1 2 0.8552897628E-03 25.6409420283 1 1 1 3 0.0000000000E+00 0.0000000000 1 1 2 1 0.8552897628E-03 25.6409420283 1 1 2 2 -0.7579810371E-05 -0.2272369982 1 1 2 3 0.0000000000E+00 0.0000000000 1 1 3 1 0.0000000000E+00 0.0000000000 1 1 3 2 0.0000000000E+00 0.0000000000 1 1 3 3 -0.4962847019E-04 -1.4878241065 1 2 1 1 0.8552897628E-03 25.6409420283 1 2 1 2 -0.1826891521E-03 -5.4768829952 1 2 1 3 0.0000000000E+00 0.0000000000 1 2 2 1 -0.1826891521E-03 -5.4768829952 1 2 2 2 0.6621266415E-05 0.1985005734 1 2 2 3 0.0000000000E+00 0.0000000000 1 2 3 1 0.0000000000E+00 0.0000000000 1 2 3 2 0.0000000000E+00 0.0000000000 1 2 3 3 0.8269325114E-05 0.2479081302 1 3 1 1 0.0000000000E+00 0.0000000000 1 3 1 2 0.0000000000E+00 0.0000000000 1 3 1 3 0.0000000000E+00 0.0000000000 1 3 2 1 0.0000000000E+00 0.0000000000 1 3 2 2 0.0000000000E+00 0.0000000000 1 3 2 3 0.0000000000E+00 0.0000000000 1 3 3 1 0.0000000000E+00 0.0000000000 1 3 3 2 0.0000000000E+00 0.0000000000 1 3 3 3 0.0000000000E+00 0.0000000000 2 1 1 1 0.8552897628E-03 25.6409420283 2 1 1 2 -0.1826891521E-03 -5.4768829952 2 1 1 3 0.0000000000E+00 0.0000000000 2 1 2 1 -0.1826891521E-03 -5.4768829952 2 1 2 2 0.6621266415E-05 0.1985005734 2 1 2 3 0.0000000000E+00 0.0000000000 2 1 3 1 0.0000000000E+00 0.0000000000 2 1 3 2 0.0000000000E+00 0.0000000000 2 1 3 3 0.8269325114E-05 0.2479081302 2 2 1 1 -0.7579810371E-05 -0.2272369982 2 2 1 2 0.6621266415E-05 0.1985005734 2 2 1 3 0.0000000000E+00 0.0000000000 2 2 2 1 0.6621266415E-05 0.1985005734 2 2 2 2 -0.1479387949E-04 -0.4435093495 2 2 2 3 0.0000000000E+00 0.0000000000 2 2 3 1 0.0000000000E+00 0.0000000000 2 2 3 2 0.0000000000E+00 0.0000000000 2 2 3 3 -0.1331365306E-04 -0.3991332777 2 3 1 1 0.0000000000E+00 0.0000000000 2 3 1 2 0.0000000000E+00 0.0000000000 2 3 1 3 0.0000000000E+00 0.0000000000 2 3 2 1 0.0000000000E+00 0.0000000000 2 3 2 2 0.0000000000E+00 0.0000000000 2 3 2 3 0.0000000000E+00 0.0000000000 2 3 3 1 0.0000000000E+00 0.0000000000 2 3 3 2 0.0000000000E+00 0.0000000000 2 3 3 3 0.0000000000E+00 0.0000000000 3 1 1 1 0.0000000000E+00 0.0000000000 3 1 1 2 0.0000000000E+00 0.0000000000 3 1 1 3 0.0000000000E+00 0.0000000000 3 1 2 1 0.0000000000E+00 0.0000000000 3 1 2 2 0.0000000000E+00 0.0000000000 3 1 2 3 0.0000000000E+00 0.0000000000 3 1 3 1 0.0000000000E+00 0.0000000000 3 1 3 2 0.0000000000E+00 0.0000000000 3 1 3 3 0.0000000000E+00 0.0000000000 3 2 1 1 0.0000000000E+00 0.0000000000 3 2 1 2 0.0000000000E+00 0.0000000000 3 2 1 3 0.0000000000E+00 0.0000000000 3 2 2 1 0.0000000000E+00 0.0000000000 3 2 2 2 0.0000000000E+00 0.0000000000 3 2 2 3 0.0000000000E+00 0.0000000000 3 2 3 1 0.0000000000E+00 0.0000000000 3 2 3 2 0.0000000000E+00 0.0000000000 3 2 3 3 0.0000000000E+00 0.0000000000 3 3 1 1 -0.4962847019E-04 -1.4878241065 3 3 1 2 0.8269325114E-05 0.2479081302 3 3 1 3 0.0000000000E+00 0.0000000000 3 3 2 1 0.8269325114E-05 0.2479081302 3 3 2 2 -0.1331365306E-04 -0.3991332777 3 3 2 3 0.0000000000E+00 0.0000000000 3 3 3 1 0.0000000000E+00 0.0000000000 3 3 3 2 0.0000000000E+00 0.0000000000 3 3 3 3 -0.1209763677E-04 -0.3626780262 --------------------------------------------------------------------------- ------------------------------------------------------------ Parameter (MHz) (CM-1) ------------------------------------------------------------ R6 -.123763E-03 -.412828E-08 R5 -.603298E+00 -.201238E-04 SI 0.659154E+03 A-reduced centrifugal distortion parameters DJ 0.100526E+00 0.335318E-05 DK 0.115252E+03 0.384439E-02 DJK 0.296615E+01 0.989403E-04 DELJ 0.100773E+00 0.336144E-05 DELK 0.115253E+03 0.384443E-02 DELJK 0.296467E+01 0.000000E+00 delJ 0.505196E-02 0.000000E+00 delK 0.153291E+01 0.000000E+00 S-reduced centrifugal distortion parameters DJ 0.996106E-01 0.332265E-05 DK 0.115247E+03 0.384424E-02 DJK 0.297165E+01 0.991235E-04 D1 -.505196E-02 -.168515E-06 D2 -.581393E-03 -.193932E-07 ------------------------------------------------------------ Centrifugal corrections for various types of rotational constants (MHz) ... Bx''-Bx 2.9380081365 By''-By 3.4823535509 Bz''-Bz 1.4828392479 Bx''-Bx' 0.1995666389 By''-By' 0.7439120533 Bz''-Bz' 5.5905014943 Bx'-Bx 2.7384414976 By'-By 2.7384414976 Bz'-Bz -4.1076622464 BxSR-Bx 2.7422752228 BySR-By 0.3239152229 BzSR-Bz -1.6958069109 BxSR-Bx'' -0.1957329136 BySR-By'' -3.1584383280 BzSR-Bz'' -3.1786461588 BxSR-Bx' -0.0038337252 BySR-By' -2.4145262747 BzSR-Bz' 2.4118553355 Vibrational frequencies after rotational projection of Cartesian force constants: 1 0.0000i 2 0.0000i 3 0.0000i 4 0.0000 5 0.0000 6 0.0000 7 1309.7695 8 1566.8670 9 3850.1707 Zero-point vibrational energy: 9.6164 kcal/mol 0.0000 kJ/mol. in runit xjoda 0