Main /
Additional Keywords For CASSCF Calculations
a) ORBITALS (=0, default): a list of orbital numbers, as printed after the SCF solution, is provided as a list of integers separated by spaces.
b) OCCUPATION (=1): the number of internal (i.e., doubly occupied) orbitals is provided for each irrep as a list of integers separated by one space and, on a new line, the list of active orbitals is provided for each irrep, as a list of integers separated by one space
a) CANONICAL (=0, default): use the Hartree-Fock wavefunction as a guess. For UHF orbitals, this corresponds to using alpha orbitals only.
b) CASCI (=1): starting from the Hartree-Fock orbitals, compute a CAS-CI wavefunction and use it as a guess. This might help convergence.
c) MODCASCI (=2): experimental use.
d) CORECASCI (=3): computes a CASCI guess using the core orbitals.
Advanced options
a) ILU/JACOBI (=0, default): use the incomplete LU decomposition (ILU) to precondition the Davidson iterations for the MO part. If the Jacobi-Davidson algorithm has been chosen, use the standard diagonal preconditioner for the first iterations and the ILU one to precondition the GMRES solution to the Jacobi-Davidson linear equations
b) JACOBI (=1): use the standard Davidson diagonalization, using a diagonal (i.e., Jacobi) preconditioner
c) ILU (=2): use the incomplete LU decomposition of the MO rotation Hessian to precondition the orbital updates in the microiterations. This is cheap and effective and is used as a default
d) EIG(=3): Explicitly diagonalize the MO rotation Hessian. This option is mainly for debugging purposes, but might be used with caution for tough cases.
|