Recent Changes - Search:

edit SideBar

Additivity And Basis-set Extrapolation Schemes

Basis-set extrapolation schemes

HF-SCF

D. Feller, The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water, J. Chem. Phys. 98, 7059 (1993)

A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Basis-set convergence of the energy in molecular Hartree–Fock calculations, Chem. Phys. Lett. 302, 437-446 (1999)

correlation energy

T. Helgaker, W. Klopper, H. Koch, and J. Noga, Basis-set convergence of correlated calculations on water, J. Chem. Phys. 106, 9639 (1997)

application of addivity and basis-set extrapolation schemes

HEAT:

A. Tajti, P.G. Szalay, A.G. Csaszar, M. Kállay, J. Gauss, E.F. Valeev, B.A. Flowers, J. Vázquez, and J.F. Stanton, HEAT: High accuracy extrapolated ab initio thermochemistry, J. Chem. Phys. 121, 11599 (2004)

Y.J. Bomble, J. Vázquez, M. Kállay, C. Michauk, P.G. Szalay, A.G. Csaszar, J. Gauss, and J.F. Stanton, High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification, J. Chem. Phys. 125, 064108 (2006)

M.E. Harding, J. Vázquez, B. Ruscic, A.K. Wilson, J. Gauss, and J.F. Stanton, High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview, J. Chem. Phys. 128, 114111 (2008)

J.H. Thorpe, C.A. Lopez, T. Lam Nguyen, J.H. Baraban, D.H. Bross, B. Ruscic, and J.F. Stanton, High-accuracy extrapolated ab initio thermochemistry. IV. A modified recipe for computational efficiency, J. Chem. Phys. 150, 224102 (2019)

Wn (n=1-4):

J.M.L. Martin and G. de Oliveira, Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory, J. Chem. Phys. 111, 1843 (1999)

A.D. Boese, M. Oren, O. Atasoylu, J.M.L. Martin, M. Kállay, and J. Gauss, W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range, J. Chem. Phys. 120, 4129 (2004)

A. Karton, E. Rabinovich, J.M.L. Martin, and B. Ruscic, W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions, J. Chem. Phys. 125, 144108 (2006)

focal-point analysis

M. Schuurman, S.R. Muir, W.D. Allen, and H.F. Schaefer III, Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers, J. Chem. Phys. 120, 11586 (2004)

Feller-Peterson-Dixon (FPD) extrapolation scheme

D. Feller, K.A. Peterson, and D.A. Dixon, A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures, J. Chem. Phys. 129, 204105 (2008)

addivity schemes for gradients and geometry optimizations

M. Heckert, M. Kállay, and J. Gauss, Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations, Mol. Phys. 103, 2109 (2005)

addivity and basis-set extrapolation schemes for gradients and geometry optimizations

M. Heckert, M. Kállay, D.P. Tew, W. Klopper, and J. Gauss, Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory, J. Chem. Phys. Chem. 125, 044108 (2006)

addivity and basis-set extrapolation schemes for the prediction of rotational constants

C. Puzzarini, M. Heckert, and J. Gauss, The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. molecules containing first-row atoms, J. Chem. Phys. 128, 194108 (2008)

addivity and basis-set extrapolation schemes for force constants and the calculation of harmonic frequencies

M. Heckert, Ph.D. thesis, Universität Mainz, 2006; M. Kállay and J. Gauss, to be published

Edit - History - Print - Recent Changes - Search
Page last modified on April 02, 2021, at 11:24 AM
CFOUR is partially supported by the U.S. National Science Foundation.